Xoncrete: a scheduling tool for partitioned real-time systems

Vicent Brocal®, Miguel Masmano, Ismael Ripollf, Alfons Crespo', Patricia Balbastre™ and Jean-Jacques Metge*

Instituto de Informatica Industrial. Universidad Politécnica de Valencia.
Camino de Vera s/n, 46022 Valencia, Spain
t {vbrocal, mmasmano, iripoll, alfons, patricia}@aiQ.upv.es
CNES Centre Spatial de Toulouse, France
I jean-jacques.metge@cnes.fr

Abstract: ARINC 653 defines a partitioned frame-
work where the partitions are scheduled according to
a predefined cyclic plan and the processes of each
partition are scheduled with a fixed priority policy.
The timing characteristics defined in ARINC (period
and duration) can hardly be used to precisely repre-
sent the timing requirements of the applications. We
extend the timing model of ARINC 653 to consider
deadlines and the periodic behaviour of the individ-
ual processes. A novel definition of how to model
periodic activities and how this new model is spe-
cially useful in an heterogeneous partitioned system
is also presented.

The new model and the set of scheduling algo-
rithms have been implemented in a scheduling tool
(called Xoncrete) to assist the designer to generate
the cyclic plan table. Although founded on solid the-
oretical results, Xoncrete is not a general purpose
tool, it is a tool designed to provide real help to the
system designer.

Keywords: Scheduling, System Modelling, Soft-
ware engineering tools.

1 Introduction

The increment in the processing power of the new
processors and the technical advances in platform
virtualisation, enable to use virtualisation or partition
solutions in the embedded real-time systems as a
way to increase the level of security.

An important characteristic that shall be pre-
served in a partitioned system is the temporal and
spatial isolation between partitions. That is, the ap-
plications that are executed in a partition shall not
have interferences from other partitions. The amount
of resources (devices, memory, and processor time)
allocated to each partition shall always be the same,
independently of the resources requested by other
partitions.

In the case of hardware devices or memory
space is it relatively easy to guarantee the proper
isolation using memory protection (MMU) and 10

protection (IOMMU) capabilities available in most
processors. Temporal isolation (how the processor is
allocated to each partition) deserves more attention.

The ARINC 653 standard defines a parti-
tioned system where the global scheduler (partition
scheduling) is a cyclic, and a local scheduler (pro-
cess scheduler) is preemptive fixed priority. The ta-
ble driven cyclic scheduler provides a strong tempo-
ral isolation among partition and the priority driven
scheduler gives a POSIX like execution environment
in each partition.

There is a vast amount of research and pub-
lished papers addressing real-time scheduling prob-
lems. Although the general topic is the same: “real-
time scheduling”, the very large combination of sys-
tem models (pure periodic, sporadic, with resources,
etc.) and the exact problem considered (schedula-
bility analysis, sensitivity analysis, resource sharing,
hierarchical scheduling, etc.) makes it difficult to em-
ploy those research results in real problems. More-
over, the system models considered by researches
and the ones used by system designers not always
coincide.

Several tools have been developed to help sys-
tem designers to perform scheduling analysis. There
are two kind of tools:

— General purpose tools (MAST, CHEDDAR,

RapidRMA [112,3])) that support several schedul-
ing policies (among others, fixed priority and ear-
liest deadline first).
These tools are basically an implementation of
the scheduling analysis techniques published in
the literature. The main goal of these tools are to
determine whether the given system is schedula-
ble or not. In some cases, they also provide some
hints on how to make the system schedulable if
it is not.

— Specific scheduling tools (netcar-ecu, SYMTA/S
ECU). These tools have been designed consid-
ering the exact tasK'] and system characteris-
tics of a specific problem (automotive execution
model) and to compute the required result. The
result is a plan table, where all the resources and
tasks are pre-allocated.

' We will use either “task” or “process” to refer to an execution activity.
2 |n a partitioned framework, the role of the integrator is to allocate resources to each partition and build the complete system.

This paper presents a new tool, Xoncrete, to as-
sist the system integratoﬂ to analyse the schedu-
lability of a partitioned system and to create the
cyclic scheduling table. Rater than a general pur-
pose scheduling tool, Xoncrete has primarily been
designed to meet the ARINC 653 system model. But
it also allows to analyse other scheduling policies for
processes such as EDF.

Besides the scheduling analysis capabilities, the
Xoncrete tool also provides a user friendly interface
for capturing and editing all the elements that are
part of a partitioned system. It has been specially
designed to generate configuration files compatible
with XtratuM 2.2. XtratuM [4] is a type 1 hypervi-
sor for safety critical real-time systems. XtratuM is an
open source development that is availble for LEON2
and is being ported to LEON3 with/without MMU in
the framework of the ESA Project AO5829 "Securely
Partitioning Spacecraft Computing Resources” (ver-
sion 3).

2 Scheduling approaches

There are basically three approaches to sched-
ule and analyse a partitioned system: “aperi-

odic servers”, “Compositional scheduling” and “flat
model”.

2.1 Aperiodic servers

Each partition is managed as a server (CBS, TBS,
IRIS [5], periodic server, etc.) by the global sched-
uler.

During the 90th a lot of work was done to solve
the problem of jointly scheduling tasks with both,
hard and soft real-time requirements. The goal was
to provide the fastest response time to the soft real-
time tasks whilst not jeopardising the timing require-
ments (deadline) of the hard real-time tasks. An
aperiodic server is commonly defined with the tuple
(budget, period). The scheduling algorithm is then
modified to allocate budget units of time every pe-
riod to the server. The term “aperiodic” was used to
denote that soft tasks (those executed by the server)
should not be considered periodic, since no guaran-
tee could be done about how much and when the
processor would be assigned to them. Soft real-time
tasks are executed by aperiodic servers. An aperi-
odic server is a process that receives requests to ex-
ecute aperiodic jobs (a function, a thread or a pro-
cess, depending on the implementation) and exe-
cutes them until the budget is exhausted.

One way to implement an aperiodic server is to
handle it as if it were a regular periodic task (periodic
server). Several other aperiodic server algorithms
(sporadic server and deferrable server for fixed pri-
ority; CBS and IRIS for dynamic priority) were pro-
posed to improve the responsiveness by improving

how and when the budget can be replenished and
consumed.

The improvement of the aperiodic servers and
a better understanding of the isolation properties of
this mechanisms refocused the application of these
servers to what was called bandwidth servers or re-
source reservation protocols, which allows real-time
tasks to execute in a dynamic environment under a
temporal protection mechanism, so that each server
will never exceed a predefined bandwidth, indepen-
dently of its actual workload requests.

Originally, a FIFO policy was used to schedule
the aperiodic jobs executed by a server. Using a
real-time policy inside the aperiodic server re-
sults in a two level hierarchical system: the global
scheduler is the EDF or the RM modified to sup-
port the selected aperiodic server, and the local
scheduler can be RM or EDF. The implementation
of most servers except the periodic (and the back-
ground server), require the modification of the global
scheduling policy to maintain the budget of

Pros & cons.

[+] A vast amount of theoretical results are available.

[-] Although they are mature enough [6].

[-] The global scheduler shall support aperiodic
servers.

[-] Complex task models are difficult to analyse and
schedule.

2.2 Compositional scheduling

The basic idea is to extend the classical and widely
used divide and conquer strategy to the temporal re-
quirements [7]. The complexity of each component
is hidden and abstracted through a clean and well
defined interface.

One of the goals of the compositional scheduling
model is to avoid performing a global schedulabil-
ity analysis that considers the timing requirements
of all the tasks in all the task groups. Ideally, each
task group can be analysed by itself for schedulabil-
ity.

The compositional model addresses the problem
of guaranteeing the correct temporal operation of the
composed system. The following two problems need
to be addressed:

Abstraction problem: analyse the timing proper-
ties of a component independently. This problem
consists on abstracting the set of real-time re-
quirements of a component as a single real-time
requirement, called scheduling interface. Ideally,
the single requirement is satisfied, if and only if,
the collective requirements of the component are
satised.

Composition problem: compose independently
analysed local timing properties into a global
timing property. This problem is defined as com-
posing the scheduling interfaces of components
as a single real-time requirement.

(c,d,p,)

Partition dbf | #‘M—“
dbf_A[M=Fdbf_Ti()] (c,d.p)
! dbf_Tnl)
H
1} f ;

Model the partition as a
single periodic task

Schedule the partitions as they were standard periodic tasks
[‘ Global scheduler J

Fig. 1. Compositional system model.

In most approaches, each partition is modelled
as a single periodic task (server) characterised by
the pair (Ca, P4), with the meaning that the server
is allocated C4 units of execution every P4 units of
time. The global scheduler decides when to sched-
ule each partition (server).

Although starting from a completely different
problem definition, the compositional scheduling and
the aperiodic server models seems to arrive to the
same solution.

Pros & cons.

[+] Clean isolation of scheduling concerns between
partition developers and system integrator. The
partition developers does not have to provide de-
tails about its internal operation (task attributes),
just the temporal abstract interface of the parti-
tion.

[+] Close to the ARINC 653 system model.

[-] The abstract interface is an upper bound of the
real needs of the partition, therefore there is a
non-negligible utilisation penalty.

[-] Inter-partition resource sharing may difficult to
implement and also take into account in the
schedulability analysis.

2.3 Flat model

This approach consists of removing the barriers de-
fined by the partitioned system and consider all the
systems tasks at once. Then suppose that a single
global scheduler is in charge of managing all the
tasks, and conduct the corresponding schedulability
analysis.

The last step is to adapt the solution back to the
partitioned system by grouping (schedule the tasks
of the same partition one after the other) the tasks
of each partition in order to reduce the number of
partition context switches.

Pros & cons.

[+] Dependencies between tasks of different parti-
tions can be analysed and solved.

[+] Mature theory support for this model.

[+] The resulting schedule (or scheduling policy) can
be very efficient. Depending on the task model,
it may be possible to nd the optimal solution.

[-] A deep knowledge of the timing attributes of all
the tasks is needed to do the scheduling analy-
sis.

[-] There is not a clean separation of concerns be-
tween partition developers and system integra-
tor, or even among partition developers.

[-] A change of an attribute of a task may change
the whole schedule.

3 Tools review

The Autosar system model is not close to the AR-
INC 653 one, which is the target of this work, for this
reason, the automotive related tool will not be con-
sidered in this brief review.

3.1 CHEDDAR

Cheddar [2] is an Ada framework which provides ser-
vices to study the temporal behaviour of real-time
applications, in particular if the application meets its
temporal constraints.

It is a framework to design and test custom
schedulers. The tool already implements the most
common schedulers (RM, EDF, LLF, fixed priority,
Round Robin, etc.).

The systems to be analysed can be described
with AADL or a with Cheddar specific language.
Therefore, it can used for quick prototyping of real-
time schedulers or for educational purposes.

System model The system model is very complete
and can capture most of the features of a real sys-
tem.

A system is defined as:

One or more processors: Each processor has an
scheduling policy (and the required scheduling
options, if any).

One or more address spaces: These address
spaces are scheduled by the processor sched-
uler and contains tasks, buffer or shared re-
sources (an address space is equivalent to a
POSIX processes). This element may define a

local scheduling policy in the case of hierarchical
scheduling. If no scheduling policy is specified,
then the processor scheduler is used to schedule
the tasks.

One or more tasks: Tasks are the execution units
(threads in the POSIX model). Each task belongs
to an address space. Among others, a task has
the following attributes: Capacity (WCET), Jitter,
Deadline, Period, Priority, Context switch over-
head, Start time and Blocking time.

It is possible to model the use of shared re-
sources between tasks. Access to the shared re-
source can be controlled by an access protocol (PIP,
PCP and IPCP). Also, precedence constrains can be
specified in the form of:

— absolute precedence between tasks: a task can
only start when another ends. Both tasks must
have the same period.

— message: express relationships between a
sender and a receiver.

— buffer: express relationships between a producer
and a consumer of data from a buffer.

A resource is an object that defines the access
protocol and the list of tasks that use it. For each
task, when the resource is acquired and released is
specified.

An example in the user guide explains how to de-
fine an ARINC 653 scheduler (Cheddar is a frame-
work to build schedulers). Partitions are periodic ac-
tivities defined with a duration and a period. Tasks
are scheduled with a preemptive fixed priority policy
in the partition’s time.

3.2 MAST

MAST (Modelling and Analysis Suite for Real-Time
Applications) is an open source set of tools for mod-
elling real-time applications and performing timing
analysis of those applications.

Initially designed around the RM scheduling pol-
icy, it was extended to support also other schedul-
ing paradigms. Hierarchical scheduling has been in-
cluded in the last version. The MAST analysis tools
are listed below:

— Worst-case response time analysis (RTA):

o Offset Based RTA for fixed priorities
Holistic RTA for fixed priorities
Offset-Based Optimised RTA for fixed priorities
Classic Rate Monotonic RTA for fixed priorities
Varying Priorities RTA
EDF Mono-processor RTA
EDF-Within-Priorities RTA, for hierarchical
scheduling
— Calculation of blocking times

e Single processor

e Remote blocking for multi-processor

e Assignment of optimum priority ceilings and pre-

emption levels

— Calculation of Slack Times
e Transaction Slacks
e System Slacks
e Processing Resource Slacks
e Operation Slacks
— Optimised Priority Assignment Techniques
e Single-processor
e HOPA
e Simulated Annealing

System model The system is as a set of platform
resources (processors and networks) and a set of
concurrent transactions.

Each processing resource (CPU) has a primary
scheduler object. The scheduler allocates its capac-
ity to the scheduling servers. A scheduling server
can attend one or more transactions. The priority (in
the case of fixed priority policy) of the scheduling
server can be given explicitly of calculated according
to the timing parameters of the transactions allocated
to it.

Complex tasks (execution activities) are mod-
elled as transactions. A simple transaction is defined
as:

1. an input event, which defines the activation pat-
tern (periodic, sporadic, aperiodic, etc.) of the
task. In the case of a periodic task, object de-
fines the period of the task

2. an operation, which represents a piece of code.
The main attribute is the WCET of the code.

3. an output event, which is used to define the end
of the transaction. The output event is used to
define the deadline of the transaction.

It is possible to define complex transactions,
composed of several sequential operations. Also,
each operation can use one or more protected re-
sources (critical sections).

3.3 Rapid-RMA

Rapid-RMA is an analysis and simulation scheduling
tool. Although it has been designed for the fixed pri-
ority scheduling methodology, it has a module to per-
form basic scheduling analysis of cyclic schedulers.

Provides a powerful user friendly interface, and
the system model is complete.

System model Rapid-RMA models the system as
a set of resources that are used by the tasks. There
are three kind of resources: “CPU”, “Non-CPU” and
“Node”.

CPU: Models a processing unit. The most important
attributes are: processing rate and context switch
time.

Non-CPU: This category contains the following re-

source types: Memory, DMA, Bus, Database
lock, Semaphore, IO port, Service, Method, Sen-
sor, Panel. The user can define new types of re-
sources.
The attributes are: ID, name, type, node (where
the resource is located), acquisition time and de-
acquisition time, list of other nodes that access
this resource.

Node: Models the notes of a distributed system.

Each task is a unit that performs work in the sys-
tem concurrently with other tasks.

Basic task attributes: period, ready time (time
when the task can start its first activation), WCET
(Amount of work), priority and phase. It is also pos-
sible to define for each task:

a set of non-preempt able subsections,
intermediate deadlines,

a list of resources,

and a list of task dependencies.

It is possible to model both, the “amount of work”
and the period of a task as a an statistical distribution
(uniform, exponential, or user defined histogram).

4 Xoncrete overview

Xoncrete is a tool to assist the system designer
to configure the resources (memory, communica-
tion ports, devices, processor time, etc.) allocated to
each partition. It has two parts: 1) an resource editor
to define the resources allocated to each partition;
and 2) a scheduling analysis tool.

Although Xoncrete has been designed consider-
ing the syntax and resources managed by XtratuM,
it can be easily adapted to the ARINC 653 model.
In fact, the scheduling analysis part can be used di-
rectly to generate ARINC plans.

4.1 System model

The system model of Xoncrete is a based (simplified
version) of the MARTE-UML specification. The ele-
ments of the system are:

Mutual exclusion resource: An abstract object

used to define mutual exclusion between tasks.
It is only characterised by its name.
We will assume the SRP as the access proto-
col to avoid unbounded priority inversion. The
SRP protocol can be used with both, fixed and
dynamic priorities.

Task: The elemental execution unit. A task is exe-
cuted by a partition. A task belongs to a parti-
tion. Tasks are characterised by its computation
time (WCET) and the set of mutual exclusion
resources used. It is assumed that all the mu-
tual exclusion resources are requested (locked)

when the task starts and released (unlocked)
when the task ends.

Contrarily to the classic periodic task model,
where a task T; is defined as the tuple
(Ci, Dy, Py, O;), where C; is the WCET, D; is the
deadline, P; is the period and O; is the initial off-
set; in Xoncrete, a task identifies just the block of
code.

ETEF: It stands for End-to-End flow. A sequence of

tasks with temporal attributes. The ETEF is the
element that defines the periodic behaviour and
temporal restrictions of the tasks. The tasks that
are part of an ETEF can belong to different parti-
tions, that is, an ETEF is not binded with an spe-
cific partition, it is a system wide element.
ETEFs are characterised by period, deadline and
initial offset: as well as the sequence of tasks:
({T.,.., T}, D;, P;,O;) . The sequence of tasks
is executed periodically, and the last task of the
sequence must complete its execution before
the specified deadline. Optionally, each task may
have a partial deadline.
A task can appear in one ore more ETEFs. Since
a task may be part of several ETEFs, the task
may have different timing requirements depend-
ing the ETEF which is part of. An ETEF with one
task, is equivalent to a single task in the classic
periodic model.

Partition 1 Partition 2

WCET T2
et 72]

P2/T1 partial deadline

P1TL = p2m1 IR T l

Etef Etef deadline ‘
offset !

time

Etef period |

Fig. 2. Diagram of an ETEF.

Partition: A container where the tasks are exe-
cuted. Task are directly scheduled by the par-
tition itself. The partition defines the scheduling
policy used to schedule its tasks.

Partitions are used to define spatial isolation, and
where the tasks are executed/scheduled.

Hypervisor: The global scheduler. It schedules par-
titions.

About the periodic behaviour: As far as we know,
the period has been always an “input” parameter to
the scheduling analysis. In the classical models, the
period is a parameter derived from the discrete regu-
lator of a control system, or other physical constraint
of some external actuator or sensor. In some cases,
the tasks can operate at different rates without per-

formance loses, or the control system can be ad-
justed to operate at a given rate.

Therefore, it would be possible to define the pe-
riod of an ETEF as a range of acceptable periods
rather than a single fixed period, and let the analysis
tool to select the period that produces a better plan.

The Major Active Frame (MAF) of a cyclic
scheduling plan is computed as the least common
multiple (LCM) of the periods of all the ETEFs. LCM
is very sensitive to the primality between the peri-
ods. For example, if the periods are 8 and 17 then
the LCM is 12(1’ﬂ; reducing the period of the second
ETEF to 16, then LCM(8,16)=16. The second ETEF
is executed at a higher rate, and the LCM is much
smaller.

The final MAF length can be greatly reduced if
the user allows the periods to be “adjusted” by the
Xoncrete tool, even when a very small flexibility is
allowed.

The process to work with ranges of periods is:

1. The user defines WCET of each task.

2. The user defines the periodic behaviour of the
ETEFs as ranges of valid periods or as fixed pe-
riods depending on the kind of application.

3. The tool calculates the period for each ETEF
that produces the smallest MAF. The algorithm
for finding the set of periods which produces the
smallest MAF is a work in progress.

4. The user adjusts (if needed) the algorithms and
operation of the tasks to the computed periods.

Typically, MAF length is reduced by making the
periods of the tasks/ETEFs to be harmonic (to have
large common divisors for the periods). This can
be easily done in a single system (non-partitioned),
where all the tasks belong to a single application and
are developed by a single team. In a partitioned sys-
tem, each partition may be developed by a different
team, using a different execution environment, and
with a different time bases. In this scenario, there are
more chances of having non harmonic periods, and
so the MAF may be too large to be practical. Note
that a cyclic scheduler has to store the plan table in
main memory.

Besides a smaller MAF, the specification of pe-
riods as ranges allows the integrator to adjust the
utilisation factor during the integration phase.

5 Scheduling analysis

Once the system parameters and timing require-
ments hasve been introduced and validated, the sys-
tem can be analysed and the scheduling plan can be
generated.

3 8 and 17 are coprime or relatively prime.

| Gather system information |

Enter data

Check data consistency

Human readable
description

MAF &
workload analysis

MAF
Utilization factors
Periods & Offsets

Plan & performance
measures
Plan table

Fig. 3. Xoncrete work flow.

Schedule analysis
Generate plan

Customise the plan

The analysis and plan generation is divided in
three steps:

1. Tune ETEF parameters. Compute the MAF, com-

pute the periods, and select the offsets. Figure 4]
shows the analysis window, previously to the
MAF calculation. The user is allowed to modify
the ranges of the periods, while the tool com-
putes the MAF in an iterative process.
The result from this step is an exact, i.e. fixed pe-
riods and fixed offsets, workload (ETEFs) speci-
fication which can be used to generate the plan
in the next step.

2. Generate schedule. The plan is generated and
statistical information jointly with a graphical rep-
resentation of the plan is presented to the user
(figure[5).

The plan is generated using well known schedul-
ing techniques:

— EDF as the base scheduling policy [8].

— Minor modifications to the EDF criteria in or-
der to reduce the number of partition context
switches.

— SRP to access mutual exclusion re-
sources [9].

The goal is to generate a short cyclic plan (with
less slots) which can be used as an ARINC 653
partition plan. The tool also checks if the tasks
of each partition can be scheduled by the local
scheduler. In the case that the local scheduler
is not able to schedule it (because there is not
a valid priority assignment) then the plan that
makes it schedulable is provided.

3. Tune schedule. The user can make minor local
changes to the generated plan.
This step is still under development.

ssssssssssss

Results

System MAF: 24000 Feasible System

Fig. 4. Analysis: step 1.

1Tune ETEF parameters 2 Generate schedule 3.Tune schedule Scheduler wizard

End-to-end-flows

nnnnn

ooooo

Fig. 5. Analysis: step 2.

6 Conclusion and future work

There is a gap between the research on schedul-
ing algorithms and how these results can be used in
real problems. Partitioned systems are widely used
in safety critical systems where the applications are
both, complex and critical.

Rather than implementing a complex tool (been
able to use a wide variety of scheduling policies and
complex systems models), Xoncrete is a tool de-
signed to meet the requirements of an specific tar-
get: aeronautical and aerospatial systems. There are
similar tools in the automotive industry (NETCAR-
ECU ,SymTA/S ECU) specially designed to meet the
automotive framework: simple tasks, bus centered,
muli-processor, etc.

Although ARINC 653 specification defines a par-
titioned system with two level scheduling policies
(cyclic for partitions and fixed priority for processes),
it does not give information about how to build the
cyclic plan or how to analyse the schedulability of
the system.

This paper presents an extension of the AR-
INC 653 system model (based on the MARTE-UML)
which is captures the timing requirements of complex
partitioned systems. The model is powerful enough
to capture most of the requirements of any real world

application in an intuitive way; but also it is possible
to build a compact and easy to debug plan.

Xoncrete is not a scheduling analysis algorithm,
but an interactive tool to help the user to build the
system.

As an on going work, we have developed an al-
gorithm to find the minimum LCM of a set of ranges
of periods.

7 Acknowledgement

This work has been partially supported by a CNES
contract and an Spanish Government Research Of-
fice under grant TIN2008-06766-C03-02/TIN.

8 References

[1] Julio L. Medina, Julio L. Medina Pasaje, Michael Gon-
zlez Harbour, and Jos M. Drake. Mast real-time view:
A graphic uml tool for modeling object-oriented real-
time systems. In In the 22nd IEEE Real-Time Systems
Symposium (RTSS01, pages 245-256, 2001.

[2] F. Singhoff, J. Legrand, L. Nana, and L. Marcé. Ched-
dar: a flexible real time scheduling framework. Ada
Lett., XX1V(4):1-8, 2004.

[3] Tri-Pacific. RapidRMA. www.tripac.com, 2002.

[4] M. Masmanao, I. Ripoll, A. Crespo, J.J. Metge, and P. Ar-
beret. Xtratum: An open source hypervisor for TSP em-
bedded systems in aerospace. In DASIA 2009. DAta
Systems In Aerospace., May. Istanbul 2009.

[5] Luca Marzario, Giuseppe Lipari, Patricia Balbastre,
and Alfons Crespo. Iris: A new reclaiming algorithm
for server-based real-time systems. Real-Time and
Embedded Technology and Applications Symposium,
IEEE, 0:211, 2004.

[6] Patricia Balbastre, Ismael Ripoll, and Alfons Crespo.
Exact response time analysis of hierarchical fixed-
priority scheduling. In Proceedings of 15th IEEE In-
ternational Conference on Embedded and Real-Time
Computing Systems and Applications, August 2009.

[7] Easwaran Arvind, Lee Insup, Sokolsky Oleg, and
Vestal Steve. A compositional framework for avionics
(arinc-653) systems. Technical report, Department of
Computer & Information Science, University of Penn-
sylvania. No. MS-CIS-09-04, January 2009.

[8] E. W. Giering, Ill and T. P. Baker. A tool for the deter-
ministic scheduling of real-time programs implemented
as periodic ada tasks. In SETAZ2: Proceedings of the
second international symposium on Environments and
tools for Ada, pages 54—73, New York, NY, USA, 1994.
ACM.

[9] Sanjoy K. Baruah. Resource sharing in edf-scheduled
systems: A closer look. In RTSS ’06: Proceedings of
the 27th IEEE International Real-Time Systems Sym-
posium, pages 379387, Washington, DC, USA, 2006.
IEEE Computer Society.

9 Glossary

AADL Architecture Analysis and Design Language.

CBS Constant Bandwidth Server

EDF Earliest Deadline First

ETEF End-to-End-Flow

IOMMU Input/Output Memory Management Unit

IPCP Immediate Priority Ceiling Protocol

IRIS Idle-time Reclaiming Improved Server

LCM Least Common Multiple

LLF Least Laxity First

MAF MAjor Frame

MAST Modeling and Analysis Suite for Real-Time Appli-
cations

MMU Memory Management Unit

PCP Priority Ceiling Protocol

PIP Priority Inheritance Protocol

RM Rate Monotonic

RTA Response Time Analysis

TBS Total Bandwidth Server

SRP Stack Resource Protocol

WCET Worst Case Execution Time.

	Xoncrete: a scheduling tool for partitioned real-time systems
	Vicent Brocal, Miguel Masmano, Ismael Ripoll, Alfons Crespo, Patricia Balbastre and Jean-Jacques Metge

