XTRATUM: AN OPEN SOURCE HYPERVISOR FOR TSP EMBEDDED SYSTEMS IN
AEROSPACE

A. Crespo', L. Ripoll', M. Masmano', P. Arberet?, and J.J. Metge’

Instituto de Informdtica Industrial, Universidad Politécnica de Valencia, Spain
2CNES, France

ABSTRACT

XtratuM is an hypervisor designed to meet safety critical
requirements. XtratuM 2.1.0 is a redesign of the former
version XtratuM 2.0 (for x86 architectures) to meet safety
critical requirements. It has been ported to SPARC v8§
arquitecture and specially to the to the LEON2 proces-
sor, which is the reference platform for the spatial sec-
tor. Adaptation involves a strong effort in redesign to be
closer to the ARINC-653 standards. As far as we know,
XtratuM is the first hypervisor for the SPARC v8 arqui-
tecture. In this paper, the main design aspects are dis-
cussed and the internal architecture described. An ini-
tial evaluation of the most significant metrics is also pro-
vided.

Key words: Partitioning systems, hypervisors,micro-
kernels.

1. INTRODUCTION

Although virtualisation has been used in mainframe sys-
tems since 60’s; the advances in the processing power of
the desktop processors in the middle of the 90’s, opened
the possibility to use it in the PC market. The embedded
market is now ready to take advantage of this promising
technology. Most of the recent advances on virtualization
have been done in the desktop systems, and transferring
these results to embedded systems is not as direct as it
may seem.

The current state of the visualizing technology is the re-
sult of a convergence of several technologies: operating
system design, compilers, interpreters, hardware support,
etc. This heterogeneous origin, jointly with the fast evo-
lution, has caused a confusion on the terminology. The
same term is used to refer to different ideas and the same
concept is differently named depending on the engineer
background.

A virtual machine (VM) is a software implementation
of a machine (computer) that executes programs like a
real machine. Hypervisor (also known as virtual ma-
chine monitor VMM [Gol74]) is a layer of software (or
a combination of software/hardware) that allows to run

several independent execution environments' in a single
computer. The key difference between hypervisor tech-
nology and other kind of virtualizations (such as java vir-
tual machine or software emulation) is the performance.
Hypervisor solutions have to introduce a very low over-
head; the throughput of the virtual machines has to be
very close to that of the native hardware. Hypervisor is a
new and promising technology, but has to be adapted and
customized to the requirements of the target application.
As far as we know, there are no previous experiences with
hypervisors for spatial systems.

When a hypervisor is designed for real-time embedded
systems, the main issues that have to be considered are:
temporal and spatial isolation, basic resource virtualisa-
tion (clock and timers, interrupts, memory, cpu time, se-
rial i/0), real-time scheduling policy, deterministic hyper-
visor system calls, efficient inter-partition communica-
tion, efficient context switch, low overhead and low foot-
print.

In this paper, we present the design, implementation and
evaluation of XtratuM for the LEON2 processor. Al-
though XtratuM was initially implemented for x86 archi-
tectures, its porting to LEON2 has implied a strong effort
in redesign and implementation due to the architecture
constraints.

2. VIRTUALISATION TECHNOLOGIES

Attending to the resources used by the hypervisor there
are two classes of hypervisors called type 1 and type 2.
The type 1 hypervisors run directly on the native hard-
ware (also named native or bare-metal hypervisors); the
second type of hypervisors are executed on top of an op-
erating system. The native operating system is called host
operating system and the operating systems that are exe-
cuted in the virtual environment are called guest operat-
ing systems.

Although the basic idea of virtualizing[Cor] is widely
understood: “any way to recreate an execution environ-
ment, which is not the original (native) one”; there are

'We will use the terms:guest, virtual machine and partition as syn-
onyms.

substantial differences between the different technologi-
cal approaches used to achieve this goal.

Virtualizing is a very active area, several competing tech-
nologies are actively developed. There is still not a clear
solution, or a winner technology over the rest. Some vir-
tualizing technologies are better than other for a given tar-
get. For example, on desktop systems, para-virtualization
is the best choice if the source code of the virtualized en-
vironment is available, otherwise full-virtualization is the
only possible solution.

A detailed description and analysis of the techniques and
the existing solutions is beyond the scope of this report
(the reader is referred to the document “Virtualization:
State of the Art” [SCOO08]). Just to summarise the current
available solutions for the real-time embedded systems:

2.1. Separation kernel

Also known as operating system-level virtualization. In
this approach the operating system is extended (or im-
proved) to enforce a stronger isolation between processes
or groups of processes. Each group of isolated group of
processes is considered a partition. In this solution, all
the partitions must use the same operating system. It is
like if several instances of the same O.S. were executed
in the same hardware.

An important disadvantage of the this solution is the large
amount of code and the high complexity (the whole O.S.)
of the virtualizer.

2.2. Micro-kernel

This was originally an architectonic solution for develop-
ing large and complex operating systems. The idea was
to separate the core kernel services from the rest of more
complex and “baroque” services. The core kernel ser-
vices are implemented by a layer of code called micro-
kernel, and consist of: context switch, basic memory
management, and simple communication services (IPC).

Only the micro-kernel code is executed in processor
privileged-mode, the rest of the operating system subsys-
tems (scheduler, user process management, memory ser-
vices, filesystem, network stack, etc.) are implemented
as micro-kernel thread. The operating system itself is de-
signed as a set of cooperating servers; each server is a
thread with its own protected memory space and commu-
nicated with other servers via the micro-kernel IPC facili-
ties. The micro-kernel implements only the mechanisms;
the policies are implemented by the micro-kernel threads
at user level (even the scheduling policy).

“The microkernel implements only the mechanism to
select one of the time partitions as active foreground
partition. The policy part of deciding which of the
time partitions is activated when is left to the user
level. ...”

Micro-kernel was initially presented as a solution (the
right way to do) to the supposed problems of the mono-
lithic kernels®. This strong (and enforced by the micro-
kernel) isolation between the components of the oper-
ating system prevents that an error on a component af-
fects the behavior of the rest of the system. Although the
microkernel technology was developed as a paradigm to
implement a single operating system, the services pro-
vided by the micro-kernel can be used to build several
different operating systems, resulting in a virtualized sys-
tem. Currently the main drawback is the non negligi-
ble overhead introduced by the communication mech-
anism, and the high abstraction level of the processor.
The virtualized operating system must be highly modi-
fied (ported) to meet the micro-kernel API and philoso-
phy. The micro-kernel approach started with the March
micro-kernel. The most representative implementation of
a micro-kernel is the L4 [Lie95].

2.3. Bare-metal hypervisor

It is a thin layer of software that virtualizes the criti-
cal hardware devices to create several isolated partitions.
The hypervisor also provides other virtual services: inter-
partition communication or partition control services.

The hypervisor does not define an abstract virtual ma-
chine but tries to reuse and adapt to the underlying hard-
ware as much as possible to reduce the virtualization
overhead. In other words, the virtual machine will be
close to the native hardware in order to directly use the
native hardware as much as possible without jeopardiz-
ing the temporal and spatial isolation. Several hypervi-
sors are available for general purpose operating systems.

2.4. Para-virtualization

The para-virtualization (term coined in the
Xen [DFH™03] project) technique consist in replacing
the conflicting instructions® explicitly by functions
provided by the hypervisor. In this case, the partition
code has to be aware of the limitations of the virtual
environment and use the hypervisor services. Those
services are provided thought a set of hypercalls.

The hypervisor is still in charge of managing the hard-
ware resources of the systems, and enforce the spatial and
temporal isolation of the guests. Direct access to the na-
tive hardware is not allowed.

The para-virtualization is the technique that better fits
the requirements of embedded systems: Faster, simpler,
smaller and the customization (para-virtualization) of the
guest operating system is not a problem because the
source code is available. Also, this technique does not
requires special processor features that may increase the
cost of the product.

ZLinux is a monolithic kernel.
3Conflicting instructions: instructions that operate directly on the
native hardware and may break the isolation.

2.5. Dedicated devices

In the server and desktop segments, the virtualizer pro-
vides a complete (or full) virtualized environment for
each virtual machine. That is, the each virtual machine
is fully isolated from the native hardware, and has no di-
rect access to any peripheral.

Some virtualizers allows a virtual machine to access di-
rectly some parts of the native hardware. This concept is
known as partial virtualization. This technique is widely
used in embedded systems when a device is not shared
among several partitions, or when the complexity of the
driver is that high that it does not worth including it in
the virtualizer layer. In some cases, when the policy for
sharing a peripheral is user specific (or when the user re-
quires a fine grain control over the peripheral), it is better
to allocate the native peripheral to a designated manager
virtual machine.

In this case, the virtualizer is not aware of the exact oper-
ation of the peripheral, but enforces that only the allowed
partition uses it.

This technique is frequently used in embedded systems
due to the use of home designed (or customised) periph-
erals.

3. XTRATUM OVERVIEW

XtratuM 1.0 [MRCO05a, MRCO5b] was designed ini-
tally as a substitution of the RTLinux [Yod, Bar97] to
achieve temporal and spatial requirements. XtratuM was
designed as a nanokernel which virtualises the essential
hardware devices to execute concurrently several OSes,
being at least one of these OSes a RTOS. The other hard-
ware devices (including booting) were left to a special
domain, named root domain. The use of this approach let
us speed up the implementation of a first working proto-
type. Like RTLinux before, XtratuM was implemented
as a LKM which, once loaded, takes over the box; Linux
was executed as the root domain. XtratuM and the root
domain still shared the same memory sapce. Neverthe-
less, the rest of the domains were run in different memory
maps, providing partial space isolation.

After this experience, it was redesigned to be independent
of Linux and bootable. The result of this is XtratuM 2.0.
In the rest of this paper, the term XtratuM will refer to
this second version.

XtratuM is a type 1 hypervisor that uses para-
virtualization. The para-virtualized operations are as
close to the hardware as possible. Therefore, porting an
operating system that already works on the native sys-
tem is a simple task: replace some parts of the operating
system HAL (Hardware Abstraction Layer) with the cor-
responding hypercalls.

The ARINC-653 [Air96] standard specifies the base-
line operating environment for application software used
within Integrated Modular Avionics (IMA), based on a
partitioned arquitecture. Although not explicitly stated in

the standard, it was developed considering that the under-
laying technology used to implement the partitions is the
separation kernel. Athough it is not an hypervisor stan-
dard, some parts of the APEX model of ARINC-653 are
very close to the functionality provided by an hypervisor.
For this reason, it was used as a reference in the design of
XtratuM.

ARINC-653 relays on the idea of a “separation kernel”,
which basically consists in extending and enforcing the
isolation between a process or a group of processes. It
defines both, the API and operation of the partitions,
and also how the threads or processes are managed in-
side each partition. From this point of view, XtratuM
will cover the ARINC-653 specification related to the low
level layer.

In an hypervisor, and in particular in XtratuM, a partition
is a virtual computer rather than a group of strongly iso-
lated processes. When multi-threading (or tasking) sup-
port is needed in a partition, then an operating system or a
run-time support library has to provide support to the ap-
plication threads. In fact, it is possible to run a different
operating system on each XtratuM partition.

XtratuM was designed to meet safety critical real-time
requirements. The most relevant features are:

e Bare hypervisor

e Employs para-virtualisation techniques

e An hypervisor designed for embedded systems:
some devices can be directly managed by a desig-
nated partition

e Strong temporal isolation: fixed cyclic scheduler

e Strong spatial isolation: all partitions are executed
in processor user mode, and do not share memory

e Fine grain hardware resource allocation via a con-
figuration file

e Robust communication mechanisms (XtratuM sam-
pling and queuing ports)

e Full management of exceptions and errors via
Health Monitor

4. ARCHITECTURE AND DESIGN

Figure 1 shows the complete system architecture. The
main components of this architecture are:

4.1. Hypervisor

XtratuM is in charge of virtalisation services to parti-
tions. It is executed in supervisor processor mode and
virtualises the cpu, memory, interrupts and some specific
peripherals. The internal XtratuM architecture includes:
memory management, scheduling (fixed cyclic schedul-
ing), interrupt management, clock and timers manage-
ment, partition communication management (ARINC-
653 communication model), health monitoring and trac-
ing facilities. Three layers can be identified:

Supervisor Partitions

o

A
X
. o
o
5 ¥ o
52 *
RTOS
Para-virtualised services Para-virtualised services

Partition Control table

Partition Control table

PROCESSOR

Supervisor
Mode

Clock & Timers Mgnt

Non shared

User Partitions

3

Para-virtualised services

Partition Control table

Memory Manager W IP Communications

Interrupt Mgnt

W O
RTS

Para-virtualised services Para-virtualised services
Partition Control table Partition Control table

Health Monitor

Peripherals

Figure 1. System architecture.

Hardware-dependent layer It implements the set of
drivers required to manage the strictly necessary
hardware: processor, interrupts, hardware clocks,
hardware timers, paging, etc. This layer is iso-
lated from the rest through the Hardware Abstrac-
tion Layer (HAL). Thus, the HAL hides the com-
plexity of the underlying hardware by offering a
high-level abstraction of it (for instance, a ktimer is
the common abstraction to all the hardware timers).

Internal-service layer Those services are not available
to the partitions. This layer includes a minimal C li-
brary which provides the strictly required set of stan-
dard C functions (e.g. strcpy, memcpy, sprintf) and
a bundle of data structures. The system boot is also
part of the internal services.

Virtualization-service layer It provides the services re-
quired to support the para-virtualisation services,
which are provided via the hypercall mechanism to
partitions. Some of these services are also used from
other XtratuM modules.

Four strategies have been used to prevent partitions to
pervert the temporal isolation:

e Partitions cannot disable native traps. Partitions are
executed in user mode, thus guaranteeing that they
have not access to control registers. Additionally,a
partition can not interact with native traps.

e A partition can not mask those hardware interrupts
not allocated to the partition.

e Partitions have no access to the trap table. Thus, par-
titions are unable to install their own trap handlers.
All traps are rstly handled by XtratuM and, when
required, propagated to partitions.

e Partitions can not access to the system hardware
timer, but virtual timers. Partitions can set virtual
timers based on native hardware clock or the execu-
tion partition clock.

4.2. Trap and interrupt management

A trap is the mechanism provided by the SPARC v8 pro-
cessor to implement the asynchronous transfer of control.
When a trap occurs, the processor switches to supervisor
mode and jumps unconditionally into a predened handler.
XtratuM extends the concept of processor traps by adding
a 32 additional interrupt numbers. This new range is used
to implement the concept of asynchronous event. Those
asynchronous events are used to indicate to the partitions
the need for attention on the occurrence of an event.

The trap mechanism is used to handle hardware inter-
rupts, software traps and processor exceptions.

Although in a fully virtualised environment, a partition
should not need to manage native interrupt hardware;
XtratuM only virtualises the hardware peripherals that
may endanger the isolation, but leaves to the partitions to
directly manage non-critical devices. A hardware inter-
rupt can only be allocated to one partition (in the congu-
ration le).

A partition, using exclusively a device (peripheral), can
access the device through the device driver implemented
in the partition. The partition is in charge of handling
properly the device. The conguration le has to specify the
IO ports and the interrupt lines that will be used by each
partition. Two partitions cannot use the same IO port or
the same interrupt line. When a device is used by several
partitions, a specic IO server partition will be in charge
of the device management. An IO server partition is a
specic partition which accesses and controls the devices
attached to it, and exports a set of services via the inter-
partitions communication mechanisms, enabling the rest
of partitions to make use of the managed peripherals.

4.3. Inter-partition communication

Inter-partition communication is related with the commu-
nications between two partitions or between a partition
and the hypervisor. XtratuM implements a message pass-
ing model which highly resembles the one dened in the
ARINC-653. A communication channel is the logical
path between one source and one or more destinations.
Two basic transfer modes are provided: sampling and
queuing. Partitions can access to channels through access
points named ports. The hypervisor is responsible for en-
capsulating and transporting messages. At the partition
level, messages are atomic entities. Partition developers
are responsible for agreeing on the format (data types,
endianess, padding, etc.). Channels, ports and the maxi-
mum message sizes and maximum number of messages
(queuing ports) are entirely dened in the conguration les.

4.4. Health Monitor

The health monitor is the part of XtratuM that detects
and reacts to anomalous events or states. The purpose
of the HM is to discover the errors at an early stage and
try to solve or conne the faulting subsystem in order to
avoid or reduce the possible consequences. As as result of
enforcing the isolation of the partitions, XtratuM contains
a lot of consistency and security checks; therefore, it can
detect a large number of errors. Errors are grouped by
categories. Once an error is detected, XtratuM reacts to
the error providing a simple set of predened actions to be
done when it is detected.

XtratuM HM subsystem is composed by four logical
components:

HM event detection : to detect abnormal states, using
logical probes in the XtratuM code.

HM actions : a set of predened actions to recover the
fault or conne the error.

HM conguration : to bind the occurence of each HM
event with the appropriate HM action.

HM notication :
events.

to report the occurrence of the HM

Once an HM event is raised, XtratuM performs an
action that is specified in the configuration file. Next
table shows the list of HM events and the prede-
fined default action at hypervisor and partition level.

[XtratuM scope [Partition scope |

Event name [Def. action [Log [Def. Action [Log]
Processor triggered
WRITE_ERROR Warm_Reset Y Propagate N
INST_ACC_EXCEPTION Warm_Reset Y Propagate Y
ILLEGAL_INST Warm_Reset Y Propagate N
PRIVILEGED_INST ‘Warm_Reset Y Propagate Y
FP_DISABLED ‘Warm_Reset Y Propagate N
CP_DISABLED Warm_Reset Y Propagate N
REG_HW_ERROR Warm_Reset Y Suspend Y
MEM_ADDR_NOT-ALIG Warm_Reset Y Propagate N
FP_EXCEPTION Warm_Reset Y Propagate N
DATA_ACC_EXCEPTION | Warm_Reset Y Propagate Y
TAG_OVERFLOW Warm_Reset Y Propagate N
DIVIDE_EXCEPTION ‘Warm_Reset Y Propagate N
[User triggered |
| PARTITION_ERROR [[[Halt [Y |
XtratuM triggered
MEM_PROTECTION Suspend Y
PARTITION_INTEGRITY Suspend Y
PARTITION_UNRECOV. Halt Y
OVERRUN Ignore Y
SCHED_ERROR Ignore Y
INTERNAL_ERROR ‘Warm_Reset Y
UNEXPECTED_TRAP Ignore Y

Table 1. Health monitoring events and actions

4.5. Tracing

XtratuM provides a mechanism to store and retrieve the
traces generated by partitions and XtratuM itself. Traces
can be used for debugging, during the development phase
of the application, but also to log relevant events or states
during the production phase. In order to enforce resource
isolation, each partition (as well as XtratuM) has a ded-
icated trace log stream to store its own trace messages.
Trace streams str stored in buffers (RAM or FLASH).
Only supervisor partitions can read from a trace stream.

4.6. Partitions

A partition is an execution environment managed by the
hypervisor which uses the virtualised services. Each par-
tition consists of one or more concurrent processes (im-
plemented by the operating system of each partition),
sharing access to processor resources based upon the re-
quirements of the application. The partition code can be:

e An application compiled to be executed on a bare-
machine (bare-application).

e A real-time operating system (or runtime support)
and its applications.

e A general purpose operating system and its applica-
tions.

Partitions need to be virtualised to be executed on top
of an hypervisor. Depending on the type of execution
environment, the virtualisation implications in each case
can be summarised as:

Bare application The application has to be virtualised
using the services provided by XtratuM. The appli-
cation is designed to run directly on the hardware
and it has to be aware about it.

Operating system application When the application
runs on top of a (real-time) operating system, it uses
the services provided by the operating system and
does not need to be virtualised. But the operating
system has to deal with the virtualisation. The oper-
ating system has to be virtualised (ported on top of
XtratuM).

XtratuM defines two types of partitions: normal and su-
pervisor. Supervisor partitions are allowed to manage and
monitor the state of the system and other partitions. Some
hypercalls cannot be called by a normal partition or have
restricted functionality. Note that supervisor rights are re-
lated to the capability to manage the system, and not to
the ca- pability to access directly to the native hardware or
to break the isolation: a supervisor partition is scheduled
as a normal partition; and it can only use the resources
allocated to it in the conguration le.

4.7. Design issues

XtratuM has designed specifically to meet real-time con-
straints and be as efficient as possible. The main decis-
sions involving these requirements are:

Data structures are static: All data structures are pre-
defined at build time from the configuration file;
therefore: 1) more efficient algorithms can be used;
2) the exact resources used by XtratuM are known.

XtratuM code is non-preemptive: * Although this fea-
ture is desirable in most operating systems, there is
no benefits in the case of a small hypervisor. The
code is simpler (no fine grain critical sections) and
faster.

All services (hypercalls) are deterministic and fast:
XtratuM provides the minimal services to guarantee
the temporal and spatial isolation of partitions.

Peripherals are managed by partitions. XtratuM only
supervises the access to IO ports as defined in the
configuration file.

Interrupt occurrence isolation. When a partition is un-
der execution, only the interrupts managed by
this partition are enabled, which minimizes inter-
partition interferences though hardware.

Extended management of traps, interrups and errors.
All these events are handled by a module (Health
Monitor) and handled properly according the
configuration table. A trace system provides the
mechanisms to log messages.

Full control of the resources. All the system resources
allocated to partitions are specified in a configura-
tion file.

4Note that XtratuM is non-preemptive, but it is prepared to be
re-entrant, which allows multiple processors to execute concurrently
XtratuM code.

One-shot timer. It provides a 1 microsecond resolution
both for timers and clocks with a very low overhead.

4.8. LEON?2 virtualisation issues

The SPARC v8 architecture does not provide any kind
of virtualization support. It implements the classical two
privilege levels: supervisor and user; used by the operat-
ing system to control user applications. In order to guar-
antee the isolation, partition code has to be executed in
user mode; only XtratuM can be executed in supervisor
mode.

Additionally, the design of XtratuM for LEON2 pro-
cessors introduce some additional aspects as the regis-
ter window mechanism and the MPU (LEON2 without
MMU).

LEON?2 has not MMU . In a processor without MMU,
the most simple and convenient way to manage sys-
tem memory is with a xed partition memory scheme.
The required amount of memory is allocated to each
partition at boot (or load) time. Partition memory
can not grow or shrink.

LEON?2 provides a register window mechanism . A
very particular feature of the LEON (sparcv8) pro-
cessor is the register window. The register window
is a mechanism used to replace the standard stack
operation by a large set of internal processor regis-
ters. Partitions have full access to the 32 general pur-
pose registers. XtratuM guarantees their consistence
when the partition context-switch is performed.

XtratuM provides a transparent management of the
stack. Stack overflow and underflow is directly man-
aged by XtratuM without the intervention of the par-
tition. The partition code must load the stack register
with valid values.

5. SYSTEM CONFIGURATION AND DEPLOY-
MENT

The integrator, jointly with the partition developers, have
to define the resources allocated to each partition. The
configuration file that contains all the information allo-
cated to each partition as well as specific XtratuM param-
eters is called XM_CF .xml. It contains the information
as: memory requirements, processor sharing, peripherals,
health monitoring actions, etc.

Memory requirements: The amount of physical mem-
ory available in the board and the memory allocated
to each partition.

Processor sharing: How the processor is allocated to
each partition: the scheduling plan.

Native peripherals: Those peripherals not managed by
XtratuM can be used by one partition. The I/O port
ranges and the interrupt line if any.

Health monitoring: How the detected error are man-
aged: direct action, delivered to the offending par-
tition, create a log entry, etc.

Inter-partition communication: The ports that each
partition can use and the channels that link the
source and destination ports.

Since XM_CF.xml defines the resources allocated to
each partition, this file represents a contract between
the integrator and the partition developers. A partner
(the integrator or any of the partition developers) should
not change the contents of the configuration file on its
own. All the partners should be aware of the changes and
should agree in the new configuration in order to avoid
problems later during the integration phase.

In order to reduce the complexity of the XtratuM hypervi-
sor, the XM_CF . xm1 is parsed and translated into a binary
representation that can be directly used by XtratuM code.
This process is performed by two tools xmct _parser
and xmct_builder.

In order to ensure that each partition does not depend on
or affect other partitions or the hypervisor due to shared
symbols. The partition binary is not an ELF file. Itis a
raw binary file which contains the machine code and the
initialized data.

The system image is a single file which contains all
the code, data and configuration information that will be
loaded in the target board. The tool xm_embpack is a
program that reads all the executable images and the con-
figuration files and produces the system image. The final
system image also contains the necessary code to boot
the system. The system image file can be written into the
ROM of the board.

6. EVALUATION

In this section we provide the initial evaluation of Xtra-
tuM for LEON2 processor. A development board (GR-
CPCI-AT697 LEON2-FT 80MHz with 8Mb flash PROM
and 4 Mb RAM, 33 MHz 32-bit PCI bus) has been used
during the evaluation.

The following metrics have been measured:

e Partition context switch: Time needed by the hyper-
visor to switch between partitions. Three main ac-
tivities can be identified:

1. Save the context

2. Timer interrupt management

3. Scheduling decision

4. Load the context of the new partition

e Clock interrupt management: Time needed to pro-
cess a clock interrupt

e Effective slot duration: Time where the partition is
executing partition code during a slot.

e Partition performance loss: This measurement pro-
vides a measure of the overhead introduced by Xtra-
tuM. It is measured at partition level.

e Hypercall cost: Time spent in some of the hypercalls
The measures involving internal activity of XtratuM have

been perfomed adding breakpoints at the begining and
end of the code to be measured.

Internal operation Time (microseconds)
Partition Context switch 25

1. Save the context 5

2. Timer interrupt management 9

3. Scheduler 7

4. Load the context 5

Clock interrupt management 2

Effective slot duration Slot duration - 25

Table 2. Context switch evaluation

6.1. Performance evaluation

In order to evaluate the partition performance loss a sce-
nario consisting in 3 partitions with the same code which
increments a counter. They write in a sampling port the
address of the counter. A forth partition reads the ports
and prints the counter value of the each partition.

In this scenario, several plans are built:

Case 1 Partitions 1,2 and 3 are executed sequentially
with a slot duration of 1 second. The scheduling
plan consists in the execution of pl; p2; p3; p4.
When p4 is executed, it reads the final counter of
the partitions executed during 1 second. This case is
taken as reference.

Case 2 Partitions 1,2 and 3 are executed sequentially
with a slot duration of 0.2 second. The scheduling
plan consists in the execution of 5 sequences of pl;
p2; p3;... (5 times)...; p4. When p4 is executed, it
reads the final counter of the partitions executed 5
times (1 second).

Case 3 Partitions 1,2 and 3 are executed sequentially
with a slot duration of 0.1 second. The scheduling
plan consists in the execution of 10 sequences of p1;
p2; p3;... (10 times)...; p4. When p4 is executed, it
reads the final counter of the partitions executed 10
times (1 second).

Case 3 Partitions 1,2 and 3 are executed sequentially
with a slot duration of 0.2 second. The scheduling
plan consists in the execution of 5 sequences of pl;
gap; p2; gap; p3;gap ... (5 times)...; p4. When p4 is
executed, it reads the final counter of the partitions
executed 5 times (1 second).

Next table summarises the result obtained.

Source code
Configuration
(menuconfig)

XtratuM
Source Code

Partition1.bin

Custom CT1 |

Partition2.bin

Custom CT 2 |

Partition1.bin

Partition 1
Source code

Figure 2. The big picture of building a XtratuM system.

Case | Counter | Performance (loss)
1 7272518
2 7271682 0.011 %
3 7270643 0.026 %
[4 | 7271706 | -0.0003 % |

Table 3. Performance loss

Case 4 is compared with Case 2. These results provide
an idea of the overhead (or performance loss) introduced
by XtratuM when a partition is split in several time slots.

In general, the overhead can be modeled with two com-
ponents: the effect of the clock interrupt which occurs
once each two seconds and the partition context switch
which.

Next table summarizes the overhead depending on the
partition slot duration. Two overhead are provided: the
measured in the experiments and the theoretical. Slot du-
ration is in milliseconds.

Slot duration | Measured (%) | Model (%)
1000 0.00 0.00
200 0.01 0.01
100 0.03 0.03
50 0.05 0.06
20 0.14 0.14
10 0.29 0.28
5 0.57 0.56
1 2.67 2.68

Table 4. Overhead

6.2. Hypercall cost

A set of test have been designed to measure the cost of
hypercalls. All hypercalls except those that perform a
copy of the data sent or receive (read or write in ports)
should have a constant cost. Read and write operation

on ports perform a copy of the data stream to the kernel
space.

The cost measured are (unit microseconds)

Hypercall Time
XM_get_time 9
XM_set_time 9
XM_enable_irgs 10
XM_unmask_event 1
XM_create_sampling_port 23
XM write_sampling_port (16bytes) 19

XM write_sampling_port (1024bytes) 52
XM write_sampling_port (4096bytes) | 153
XM_read_sampling_port (16bytes) 19
XM_read_sampling_port (1024bytes) 53
XM_read_sampling_port (4096bytes) 154

Table 5. Hypercall measurement

Read and write operations are implemented in a naive
way: performing one byte at once. The results obtained
are coherent with the implementation. There is a large
marging of improvement on this implementation. An op-
timisation of these and other hypercalls will be done in
the next version of XtratuM.

7. CONCLUSIONS

XtratuM 2.1.0 is the first implementation of an hyper-
visor for the LEON2 processor. The initial versions of
XtratuM?> were designed for conventional real-time sys-
tems: dynamic partition loading, fixed priority schedul-
ing of partitions, Linux in a partition, etc.

This version of XtratuM, besides of the porting to the
SPARC v8 architecture, is a major redesign to meet
highly critical requirements: health monitoring services,

SXtratuM 1.2 and 2.0 were implemented in the x86 architecture only.

cyclic plan scheduling, strict resource allocation via a
configuration file, etc.

The resources allocated to each partition (processor time,
memory space, I/O ports, and interrupts, communication
ports, monitoring events, etc.) are defined in a config-
uration file (with XML syntax). A tool to analyze and
compile the configuration file has also been developed.

Two issues of the initial implementation of XtratuM have
not ported to LEON2: the MMU and the multiproces-
sor support. The effort of porting the MMU support (for
LEON3 with MMU) can be relatively low and will per-
mit to step up the spatial isolation of partitions. Xtra-
tuM 2.1.0 code has been designed to be multiprocessor
(the x86 version was multiprocessor). Therefore, Xtra-
tuM may be the faster and safer way to use a multipro-
cessor system (SMP®) in a highly critical environment.

7.1. Future work

Although this work was planned as a prototype develop-
ment, the result achieved, in efficency and performance,
is closer to a product than a proof of concept. Additional
steps are being performed to obtain a product in terms of
procedures (following the appropriated standars), docu-
mentation and code optimisation.

The roadmap of XtratuM includes the porting to LEON3
processor and the consideration of several aspects as
multi-plan, multi-core and other scheduling policies. Ad-
ditionally, the design and implementation of a minimal
run-time following the ARINC-653standard for partitions
is under study.

Partitioned based scheduling tools is one of the weak ar-
eas in the integration of partitioned systems with real-
time contraints. The improvement of the scheduling tools
to optimise the scheduling plan in another important ac-
tivity to be done in the next months.

REFERENCES

[Air96] Airlines Electronic Engineering Commit-
tee, 2551 Riva Road, Annapolis, Mary-
land 21401-7435. Avionics Application
Software Standard Interface (ARINC-653),
March 1996.

[Bar97] M. Barabanov. A Linux-Based Real-Time
Operating System. Master’s thesis, New
Mexico Institute of Mining and Technology,
Socorro, New Mexico, June 1997.

[Cor] IBM Corporation. IBM systems virtu-
alization. Version 2 Release 1 (2005).
http://publib.boulder.ibm.com/infocenter/-
eserver/v1r2/topic/eicay/eicay.pdf.

[DFH'03] B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, I. Pratt, A. Warfield, P. Barham, and

6SMP: Symmetric Muli-Processor

[Gol74]

[Lie95]

[MRCO5a]

[MRCO5b]

[SCOO08]

[Yod]

R. Neugebauer. Xen and the art of virtual-
ization. In Proceedings of the ACM Sympo-
sium on Operating Systems Principles, Octo-
ber 2003.

R.P. Goldberg. Survey of virtual machine re-
search. IEEE Computer Magazine, 7(6):34—
45, 1974.

Jochen Liedtke. On microkernel construc-
tion. In Proceedings of the 15th ACM Sympo-
sium on Operating System Principles (SOSP-
15), Copper Mountain Resort, CO, Decem-
ber 1995.

M. Masmano, I. Ripoll, and A. Crespo. In-
troduction to XtratuM. 2005.

M. Masmano, I. Ripoll, and A. Crespo. An
overview of the XtratuM nanokernel. In Pro-
ceedings of the Workshop on Operating Sys-
tems Platforms for Embedded Real-Time Ap-
plications (OSPERT), 2005.

SCOPE Promoting Open Carrier Grade Base
Platforms. Virtualization: State of the Art,
April 2008. http://www.scopealliance.org.

V. Yodaiken. The RTLinux manifesto.
http://www.fsmlabs.com/developers/whi-
te_papers/rtmanifesto.pdf.

