
Title: XtratuM: a Hypervisor for Safety Critical Embedded Systems.

Authors:M. Masmano, I. Ripoll, A. Crespo and J.J. Metge

Affiliation: Instituto de Informática Industrial, Universidad Politécnica de Valencia, Spain
CNES France

Publication: 11th Real-Time Linux Workshop. Dresden. Germany.



XtratuM: a Hypervisor for Safety Critical Embedded Systems

M. Masmano, I. Ripoll, and A. Crespo

Instituto de Informática Industrial, Universidad Politécnica de Valencia (Spain)
{mmasmano, iripoll, alfons}@ai2.upv.es

J.J. Metge

CNES (Toulouse, France)
jean-jacques.Metge@cnes.fr

Abstract

XtratuM is an hypervisor designed to meet safety critical requirements. Initially designed for x86
architectures (version 2.0), it has been strongly redesigned for SPARC v8 arquitecture and specially for
the to the LEON2 processor. Current version 2.2, includes all the functionalities required to build safety
critical systems based on ARINC 653, AUTOSTAR and other standards. Although XtratuMdoes not
provides a compliant API with these standards, partitions can offer easily the appropriated API to the
applications. XtratuM is being used by the aerospace sector to build software building blocks of future
generic on board software dedicated to payloads management units in aerospace.

XtratuM provides ARINC 653 scheduling policy, partition management, inter-partition communi-
cations, health monitoring, logbooks, traces, and other services to easily been adapted to the ARINC
standard. The configuration of the system is specified in a configuration file (XML format) and it is
compiled to achieve a static configuration of the final container (XtratuM and the partition’s code) to be
deployed to the hardware board. As far as we know, XtratuM is the first hypervisor for the SPARC v8
arquitecture.

In this paper, the main design aspects are discussed and the internal architecture described. An
evaluation of the most significant metrics is also provided. This evaluation permits to affirm that the
overhead of a hypervisor is lower than 3% if the slot duration is higher than 1 millisecond.

.

1 Introduction

Although virtualisation has been used in mainframe
systems since 60’s; the advances in the processing
power of the desktop processors in the middle of the
90’s, opened the possibility to use it in the PC mar-
ket. The embedded market is now ready to take
advantage of this promising technology. Most of the
recent advances on virtualization have been done in
the desktop systems, and transferring these results
to embedded systems is not as direct as it may seem.

The current state of the visualizing technol-
ogy is the result of a convergence of several tech-
nologies: operating system design, compilers, inter-
preters, hardware support, etc. This heterogeneous
origin, jointly with the fast evolution, has caused a
confusion on the terminology. The same term is used
to refer to different ideas and the same concept is
differently named depending on the engineer back-

ground.

A virtual machine (VM) is a software implemen-
tation of a machine (computer) that executes pro-
grams like a real machine. Hypervisor (also known
as virtual machine monitor VMM [7]) is a layer of
software (or a combination of software/hardware)
that allows to run several independent execution en-
vironments1 in a single computer. The key difference
between hypervisor technology and other kind of vir-
tualizations (such as java virtual machine or software
emulation) is the performance. Hypervisor solutions
have to introduce a very low overhead; the through-
put of the virtual machines has to be very close to
that of the native hardware.

Hypervisor is a new and promising technology,
but has to be adapted and customized to the require-
ments of the target application. As far as we know,
there are no previous experiences with hypervisors

1We will use the terms:guest, virtual machine and partition as synonyms.



for spatial systems.
When a hypervisor is designed for real-time em-

bedded systems, the main issues that have to be con-
sidered are:

• Temporal and spatial isolation.

• Basic resource virtualisation: clock and timers,
interrupts, memory, cpu time, serial i/o.

• Real-time scheduling policy for partition
scheduling.

• Efficient context switch for partitions.

• Deterministic hypervisor system calls.

• Efficient inter-partition communication.

• Low overhead.

• Low footprint.

In this paper, we present the design, implementa-
tion and evaluation of XtratuM for the LEON2 pro-
cessor. Although XtratuM was initially implemented
for x86 architectures, its porting to LEON2 has im-
plied a strong effort in redesign and implementation
due to the architecture constraints.

2 Virtualising technologies

overview

Attending to the resources used by the hypervisor
there are two classes of hypervisors called type 1 and
type 2. The type 1 hypervisors run directly on the
native hardware (also named native or bare-metal hy-
pervisors); the second type of hypervisors are exe-
cuted on top of an operating system. The native op-
erating system is called host operating system and
the operating systems that are executed in the vir-
tual environment are called guest operating systems.

Although the basic idea of virtualizing[5] is
widely understood: “any way to recreate an execu-
tion environment, which is not the original (native)
one”; there are substantial differences between the
different technological approaches used to achieve
this goal.

Virtualizing is a very active area, several compet-
ing technologies are actively developed. There is still
not a clear solution, or a winner technology over the
rest. Some virtualizing technologies are better than
other for a given target. For example, on desktop
systems, para-virtualization is the best choice if the
source code of the virtualized environment is avail-
able, otherwise full-virtualization is the only possible
solution.

A detailed description and analysis of the tech-
niques and the existing solutions is beyond the scope

of this report (the reader is referred to the docu-
ment “Virtualization: State of the Art” [12]). Just
to summarise the current available solutions for the
real-time embedded systems:

Separation kernel: Also known as operating
system-level virtualization. In this approach
the operating system is extended (or improved)
to enforce a stronger isolation between pro-
cesses or groups of processes. Each group of
isolated group of processes is considered a par-
tition. In this solution, all the partitions must
use the same operating system. It is like if sev-
eral instances of the same O.S. were executed
in the same hardware.

Micro-kernel: This was originally an architectonic
solution for developing large and complex op-
erating systems. The idea was to separate the
core kernel services from the rest of more com-
plex and “baroque” services. The core kernel
services are implemented by a layer of code
called micro-kernel, and consist of: context
switch, basic memory management, and sim-
ple communication services (IPC). Although
the microkernel technology was developed as a
paradigm to implement a single operating sys-
tem, the services provided by the micro-kernel
can be used to build several different operating
systems, resulting in a virtualized system.

The micro-kernel approach started with the
March micro-kernel [8]. The most represen-
tative implementation of a micro-kernel is the
L4 [9].

Bare-metal hypervisor: It is a thin layer of soft-
ware that virtualizes the critical hardware
devices to create several isolated partitions.
The hypervisor also provides other virtual ser-
vices: inter-partition communication or parti-
tion control services.

The hypervisor does not define an abstract vir-
tual machine but tries to reuse and adapt to
the underlying hardware as much as possible
to reduce the virtualization overhead. In other
words, the virtual machine will be close to the
native hardware in order to directly use the
native hardware as much as possible without
jeopardizing the temporal and spatial isolation.

2.1 Para-virtualization

The para-virtualization (term coined in the Xen [6]
project) technique consist in replacing the conflicting
instructions2 explicitly by functions provided by the

2Conflicting instructions: instructions that operate directly on the native hardware and may break the isolation.



hypervisor. In this case, the partition code has to be
aware of the limitations of the virtual environment
and use the hypervisor services. Those services are
provided thought a set of hypercalls.

The hypervisor is still in charge of managing the
hardware resources of the systems, and enforce the
spatial and temporal isolation of the guests. Direct
access to the native hardware is not allowed.

The para-virtualization is the technique that
better fits the requirements of embedded systems:
Faster, simpler, smaller and the customization (para-
virtualization) of the guest operating system is not a
problem because the source code is available. Also,
this technique does not requires special processor fea-
tures that may increase the cost of the product.

2.2 Dedicated devices

In the server and desktop segments, the virtualizer
provides a complete (or full) virtualized environment
for each virtual machine. That is, the each virtual
machine is fully isolated from the native hardware,
and has no direct access to any peripheral.

Some virtualizers allows a virtual machine to ac-
cess directly some parts of the native hardware. This
concept is known as partial virtualization. This tech-
nique is widely used in embedded systems when a de-
vice is not shared among several partitions, or when
the complexity of the driver is that high that it does
not worth including it in the virtualizer layer. In
some cases, when the policy for sharing a peripheral
is user specific (or when the user requires a fine grain
control over the peripheral), it is better to allocate
the native peripheral to a designated manager virtual
machine.

In this case, the virtualizer is not aware of the
exact operation of the peripheral, but enforces that
only the allowed partition uses it. This technique is
frequently used in embedded systems due to the use
of home designed (or customised) peripherals.

3 XtratuM Overview

XtratuM 1.0 [10, 11] was designed initally as a sub-
stitution of the RTLinux [13, 4] to achieve tempo-
ral and spatial requirements. XtratuM was designed
as a nanokernel which virtualises the essential hard-
ware devices to execute concurrently several OSes,
being at least one of these OSes a RTOS. The other
hardware devices (including booting) were left to a
special domain, named root domain. The use of this
approach let us speed up the implementation of a
first working prototype. Like RTLinux before, Xtra-
tuM was implemented as a LKM which, once loaded,
takes over the box; Linux was executed as the root

domain. XtratuM and the root domain still shared
the same memory sapce. Nevertheless, the rest of the
domains were run in different memory maps, provid-
ing partial space isolation.

After this experience, it was redesigned to be in-
dependent of Linux and bootable. The result of this
is XtratuM 2.2 [?]. In the rest of this paper, the
term XtratuM will refer to this second version. This
version is being used to build a TSP-based solution
for payload on-board software, highly generic and
reusable, project named LVCUGEN [2]. TSP (Time
and Space Partitioning) based architecture has been
identified as the best solution to ease and secure
reuse, enabling a strong decoupling of the generic
features to be developed, validated and maintained
in mission specific data processing [3].

XtratuM is a type 1 hypervisor that uses para-
virtualization. The para-virtualized operations are
as close to the hardware as possible. Therefore, port-
ing an operating system that already works on the
native system is a simple task: replace some parts of
the operating system HAL (Hardware Abstraction
Layer) with the corresponding hypercalls.

The ARINC-653 [1] standard specifies the base-
line operating environment for application software
used within Integrated Modular Avionics (IMA),
based on a partitioned arquitecture. Although not
explicitly stated in the standard, it was developed
considering that the underlaying technology used to
implement the partitions is the separation kernel.
Athough it is not an hypervisor standard, some parts
of the APEX model of ARINC-653 are very close to
the functionality provided by an hypervisor. For this
reason, it was used as a reference in the design of
XtratuM. It is not our intention to convert XtratuM
in an ARINC-653 compliant system.

It defines both, the API and operation of the
partitions, and also how the threads or processes are
managed inside each partition.

In an hypervisor, and in particular in XtratuM,
a partition is a virtual computer rather than a group
of strongly isolated processes. When multi-threading
(or tasking) support is needed in a partition, then an
operating system or a run-time support library has to
provide support to the application threads. In fact,
it is possible to run a different operating system on
each XtratuM partition.

XtratuM was designed to meet safety critical
real-time requirements. The most relevant features
are:

• Bare hypervisor.

• Employs para-virtualisation techniques.

• An hypervisor designed for embedded systems:



some devices can be directly managed by a des-
ignated partition.

• Strong temporal isolation: fixed cyclic sched-
uler.

• Strong spatial isolation: all partitions are exe-
cuted in processor user mode, and do not share
memory.

• Fine grain hardware resource allocation via a
configuration file.

• Robust communication mechanisms (XtratuM
sampling and queuing ports).

4 Architecture and design

Figure 1 shows the complete system architecture.

FIGURE 1: XtratuM
Architecture

The main components of this architecture are:

Hypervisor XtratuM is in charge of virtalisation
services to partitions. It is executed in su-
pervisor processor mode and virtualises the
cpu, memory, interrupts and some specific
peripherals. The internal XtratuM architec-
ture includes: memory management, schedul-
ing (fixed cyclic scheduling), interrupt man-
agement, clock and timers management, parti-
tion communication management (ARINC-653
communication model) and health monitoring.
A more detailed explanation of each compo-
nent will be detailed in the full paper.

Partitions A partition is an execution environment
managed by the hypervisor which uses the vir-
tualised services. Each partition consists of one
or more concurrent processes (implemented by
the operating system of each partition), shar-
ing access to processor resources based upon
the requirements of the application. The par-
tition code can be:

• An application compiled to be executed
on a bare-machine (bare-application).

A real-time operating system (or runtime
support) and its applications.

•• A general purpose operating system and
its applications.

Partitions need to be virtualised to be exe-
cuted on top of an hypervisor.Depending on
the type of execution environment, the virtu-
alisation implications in each case can be sum-
marised as:

Bare application The application has to be
virtualised using the services provided by
XtratuM. The application is designed to
run directly on the hardware and it has to
be aware about it.

Operating system application When the
application runs on top of a (real-time)
operating system, it uses the services pro-
vided by the operating system and does
not need to be virtualised. But the oper-
ating system has to deal with the virtual-
isation. The operating system has to be
virtualised (ported on top of XtratuM).

Two different type of partitions can be defined:
supervisor () and user ().

Partitions can send/receive messages to/from
other partitions. The basic mechanisms pro-
vided are sampling a queuing ports as defined
in ARINC-653.

4.1 Design issues

XtratuM has designed specifically to meet real-time
constraints and be as efficient as possible. The main
decissions involving these requirements are:

XtratuM has been designed specifically to meet
real-time constraints and to be as efficient as pos-
sible. The main decissions involving these require-
ments are:

Data structures are static: All data structures
are pre-defined at build time from the config-
uration file; therefore: 1) more efficient algo-
rithms can be used; 2) the exact resources used
by XtratuM are known.

XtratuM code is non-preemptive: 3 Although
this feature is desirable in most operating sys-
tems, there is no benefits in the case of a small
hypervisor. The code is simpler (no fine grain
critical sections) and faster.

3Note that XtratuM is non-preemptive, but it is prepared to be re-entrant, which allows multiple processors to execute

concurrently XtratuM code.



Hypercalls are deterministic and fast:

XtratuM provides the minimal services to
guarantee the temporal and spatial isolation
of partitions.

Peripherals are managed by partitions:

XtratuM supervises the access to IO ports
as defined in the configuration file.

Interrupt occurrence isolation: When a parti-
tion is under execution, only the interrupts
managed by this partition are enabled, which
minimizes inter-partition interferences though
hardware.

Full resource control. All the system resources
allocated to partitions are specified in a con-
figuration file.

One-shot timer: It provides a 1 microsecond res-
olution both for timers and clocks with a very
low overhead.

4.2 LEON2 virtualisation issues

The SPARC v8 architecture does not provide any
kind of virtualization support. It implements the
classical two privilege levels: supervisor and user;
used by the operating system to control user appli-
cations. In order to guarantee the isolation, partition
code has to be executed in user mode; only XtratuM
can be executed in supervisor mode.

Additionally, the design of XtratuM for LEON2
processors introduce some additional aspects as the
register window mechanism and the MPU (LEON2
without MMU).

5 System configuration and de-

ployment

The integrator, jointly with the partition develop-
ers, have to define the resources allocated to each
partition. The configuration file that contains all
the information allocated to each partition as well as
specific XtratuM parameters is called XM CF.xml. It
contains the information as: memory requirements,
processor sharing, peripherals, health monitoring ac-
tions, etc.

Memory requirements: The amount of physical
memory available in the board and the mem-
ory allocated to each partition.

Processor sharing: How the processor is allocated
to each partition: the scheduling plan.

Native peripherals: Those peripherals not man-
aged by XtratuM can be used by one partition.
The I/O port ranges and the interrupt line if
any.

Health monitoring: How the detected error are
managed: direct action, delivered to the of-
fending partition, create a log entry, etc.

Inter-partition communication: The ports that
each partition can use and the channels that
link the source and destination ports.

Since XM CF.xml defines the resources allocated to
each partition, this file represents a contract be-

tween the integrator and the partition devel-

opers. A partner (the integrator or any of the par-
tition developers) should not change the contents of
the configuration file on its own. All the partners
should be aware of the changes and should agree
in the new configuration in order to avoid problems
later during the integration phase.

In order to reduce the complexity of the XtratuM
hypervisor, the XM CF.xml is parsed and translated
into a binary representation that can be directly used
by XtratuM code. This process is performed by two
tools xmcparser and xmcbuilder.

In order to ensure that each partition does not
depend on or affect other partitions or the hypervi-
sor due to shared symbols. The partition binary is
not an ELF file. It is a raw binary file which contains
the machine code and the initialized data.

The system image is a single file which contains
all the code, data and configuration information that
will be loaded in the target board. The tool xmpack
is a program that reads all the executable images
and the configuration files and produces the system
image. The final system image also contains the nec-
essary code to boot the system. The system image
file can be written into the ROM of the board.

FIGURE 2: XtratuM
deployment process

6 Performance Evaluation

In this section we provide the initial evaluation of
XtratuM for LEON2 processor. A development



board (GR-CPCI-AT697 LEON2-FT 80MHz with
8Mb flash PROM and 4 Mb RAM, 33 MHz 32-bit
PCI bus) has been used during the evaluation.

The following metrics have been measured:

• Partition context switch: Time needed by the
hypervisor to switch between partitions. Three
main activities can be identified:

1. Save the context
2. Timer interrupt management
3. Scheduling decision
4. Load the context of the new partition

• Clock interrupt management: Time needed to
process a clock interrupt

• Effective slot duration: Time where the parti-
tion is executing partition code during a slot.

• Partition performance loss: This measurement
provides a measure of the overhead introduced
by XtratuM. It is measured at partition level.

• Hypercall cost: Time spent in some of the hy-
percalls

6.1 Partition context switch

The measures involving internal activity of XtratuM
have been measured adding breakpoints at the begin-
ing and end of the code to be measured. Next table
presents the activities involved in a partition context
switch and the cost measures (in microseconds).

Internal operation Time (µseconds)

Partition Context switch 27

1. Save the context 5

2. Timer interrupt management 9

3. Scheduler 8

4. Load the context 5

Effective slot duration Slot duration - 27

TABLE 1: Partition context switch measure-

ment

6.2 Performance evaluation

In order to evaluate the partition performance loss
a scenario consisting in 3 partitions with the same
code which increments a counter. They write in a
sampling port the address of the counter. A forth
partition reads the ports and prints the counter value
of the each partition.

In this scenario, several plans are built:

Case 1 Partitions 1,2 and 3 are executed sequen-
tially with a slot duration of 1 second. The
scheduling plan consists in the execution of p1;
p2; p3; p4. When p4 is executed, it reads the
final counter of the partitions executed during
1 second. This case is taken as reference.

Case 2 Partitions 1,2 and 3 are executed sequen-
tially with a slot duration of 0.1 second. The
scheduling plan consists in the execution of 10
sequences of p1; p2; p3;... (10 times)...; p4.
When p4 is executed, it reads the final counter
of the partitions executed 10 times (1 second).

Case 3 Partitions 1,2 and 3 are executed sequen-
tially with a slot duration of 0.2 second. The
scheduling plan consists in the execution of 5
sequences of p1; p2; p3;... (5 times)...; p4.
When p4 is executed, it reads the final counter
of the partitions executed 5 times (1 second).

Case 4 Partitions 1,2 and 3 are executed sequen-
tially with a slot duration of 0.2 second. The
scheduling plan consists in the execution of 5
sequences of p1; gap; p2; gap; p3;gap ... (5
times)...; p4. When p4 is executed, it reads
the final counter of the partitions executed 5
times (1 second).

Next table compares the results achieved by the
three first cases. The values shown are the counter
achieved each major frame.

case 1 case 2 case 3

Average 11428202 11426656 11424764

Difference 0 1546 3438

Performance lost 0 0,01% 0,03%

TABLE 2: Case 1,2 and 3 measurements

Next table compares the results of cases 2 and 4.
The difference is a gap introduced each time a slot is
planned. As it can see in the table the difference is
not significative.

case 2 case 4

Average 11426656 11426715

Difference 59 0

Loss of performance 0,0001% 0,00

TABLE 3: Case 2 and 4 measurements

6.3 Performance lost due to the num-

ber of partitions.

In order to evaluate the effect of the number of par-
titions, two cases has been defined.

Case 5 3 Partitions are executed sequentially with
a slot duration of 100 miliseconds. The
scheduling plan consists in the execution of p1;
p2; p3; p4. When p4 is executed, it reads the
final counter of the partitions executed during
1 second.

Case 6 8 Partitions are executed sequentially with
a slot duration of 100 miliseconds. The
scheduling plan consists in the execution of p1;



p2; p3; p4. When p4 is executed, it reads the
final counter of the partitions executed during
1 second. Table 5 shows only 4 of the 8 parti-
tion results.

Next tables show the results in each case and a
comparison of both cases.

Case 5 Partition 1 Partition 2 Partition 3

Avg 1142484 1142484 1142474

Max 1142500 1142488 1142476

Min 1142468 1142474 1142468

Stdev 3,49 4,98 4,09

TABLE 4: Case 5: 3 partitions measurements

Case 6 Part. 1 Part. 4 Part. 6 Part. 8

Avg 1142474 1142477 1142475 1142477

Max 1142476 1142477 1142477 1142477

Min 1142444 1142477 1142464 1142477

Stdev. 4,57 0.00 0,42 0.00

TABLE 5: Case 6: 8 partitions measurements

Case 5 Case 6 Difference (C5 - C6)

Average 1142484 1142477 4

Avg 1142484 1142484 0

Max 1142500 1142488 12

Min 1142468 1142474 6

TABLE 6: Cases 5 and 6 comparison

6.4 Hypercall cost

Several tests has been designed to measure the cost
of hypercalls. All hypercalls except those that per-
form a copy of the data sent or receive (read or write
in ports) should have a constant cost. read and write
operation on ports perform a copy of the data stream
to the kernel space.

The cost measured of some of the hypercalls are
shown in the next table.

Hypercall Time

XM get time(XM HW CLOCK) 5

XM get time(XM EXEC CLOCK) 7

XM set timer(XM HW CLOCK) 13

XM set timer(XM EXEC CLOCK) 13

XM enable irqs 5

XM disable irqs 5

XM hm open 65

XM hm status 15

XM trace open 17

XM trace status 32

XM trace event 87

XM unmask irq 16

XM create sampling port 18

XM write sampling port (32) 30

XM write sampling port (256) 83

XM write sampling port (1024) 31

XM write sampling port (4096) 14

XM read sampling port (32) 66

XM read sampling port (256) 5

XM read sampling port (1024) 13

XM read sampling port (4096) 5

XM create queuing message 68

XM send queuing message (32) 15

XM send queuing message (256) 20

XM send queuing message (1024) 30

XM send queuing message (4096) 81

XM receive queuing message (32) 15

XM receive queuing message (256) 19

XM receive queuing message (1024) 32

XM receive queuing message (4096) 92

TABLE 7: Hypercall measurements

In read/write operation on ports numbers in
parenthesis indicate the message length in bytes.
Time units in microseconds.

7 Conclusions and Future

Work

XtratuM 2.2 is the first implementation of an hyper-
visor for the LEON2 processor. The initial versions
of XtratuM4 were designed for conventional real-time
systems: dynamic partition loading, fixed priority
scheduling of partitions, Linux in a partition, etc.

This version of XtratuM, besides of the porting
to the SPARC v8 architecture, is a major redesign to
meet highly critical requirements: health monitoring
services, cyclic plan scheduling, strict resource allo-
cation via a configuration file, etc.

The resources allocated to each partition (pro-
cessor time, memory space, I/O ports, and inter-
rupts, communication ports, monitoring events, etc.)

4XtratuM 1.2 and 2.0 were implemented in the x86 architecture only.
5SMP: Symmetric Muli-Processor



are defined in a configuration file (with XML syntax).
A tool to analyze and compile the configuration file
has also been developed.

Two issues of the initial implementation of Xtra-
tuM have not ported to LEON2: the MMU and the
multiprocessor support. The effort of porting the
MMU support (for LEON3 with MMU) can be rel-
atively low and will permit to step up the spatial
isolation of partitions. XtratuM 2.2 code has been
designed to be multiprocessor (the x86 version was
multiprocessor). Therefore, XtratuM may be the
faster and safer way to use a multiprocessor system
(SMP5) in a highly critical environment.

This work was initially planned as a prototype
development, however, the achieved result, in effi-
cency and performance, is closer to a product than
a proof of concept. Next step is the formal model of
the hypervisor as first step to the certification.

Partitioned based scheduling tools is one of the
weak areas in the integration of partitioned systems
with real-time contraints. The improvement of the
scheduling tools to optimise the scheduling plan in
another important activity to be done in the next
months.

References

[1] Avionics Application Software Standard Inter-
face (ARINC-653), March 1996. Airlines Elec-
tronic Eng. Committee.

[2] P. Arberet, J.-J. Metge, O. Gras, and A. Crespo.
TSP-based generic payload on-board software.
In DASIA 2009. DAta Systems In Aerospace.,
May. Istanbul 2009.

[3] P. Arberet and J. Miro. IMA for space : sta-
tus and considerations. In ERTS 2008. Embed-
ded Real-Time Software., Jannuary. Toulouse.
France 2008.

[4] M. Barabanov. A Linux-Based Real-Time Op-
erating System. Master’s thesis, New Mexico In-

stitute of Mining and Technology, Socorro, New
Mexico, June 1997.

[5] IBM Corporation. IBM systems virtualization.
Version 2 Release 1 (2005). http://publib.-
boulder.ibm.com/infocenter/eserver/v1r2/-
topic/eicay/eicay.pdf.

[6] B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, I. Pratt, A. Warfield, P. Barham, and
R. Neugebauer. Xen and the art of virtualiza-
tion. In Proceedings of the ACM Symposium on
Operating Systems Principles, October 2003.

[7] R.P. Goldberg. Survey of virtual machine re-
search. IEEE Computer Magazine, 7(6):34–45,
1974.

[8] David B. Golub, Randall W. Dean, Alessandro
Forin, and Richard F. Rashid. Unix as an ap-
plication program. In USENIX Summer, pages
87–95, 1990.

[9] Jochen Liedtke. On microkernel construction.
In Proceedings of the 15th ACM Symposium on
Operating System Principles (SOSP-15), Cop-
per Mountain Resort, CO, December 1995.

[10] M. Masmano, I. Ripoll, and A. Crespo. Intro-
duction to XtratuM. 2005.

[11] M. Masmano, I. Ripoll, and A. Crespo. An
overview of the XtratuM nanokernel. In Pro-
ceedings of the Workshop on Operating Systems
Platforms for Embedded Real-Time Applications
(OSPERT), 2005.

[12] SCOPE Promoting Open Carrier Grade Base
Platforms. Virtualization: State of the Art,
April 2008. http://www.scope-alliance.org.

[13] V. Yodaiken. The RTLinux manifesto.
http://www.fsmlabs.com/developers/white pa-
pers/rtmanifesto.pdf.


	Introduction
	Virtualising technologies overview
	Para-virtualization
	Dedicated devices

	XtratuM Overview
	Architecture and design 
	Design issues
	LEON2 virtualisation issues

	System configuration and deployment
	Performance Evaluation
	Partition context switch
	Performance evaluation
	Performance lost due to the number of partitions.
	Hypercall cost

	Conclusions and Future Work

