
Title: Partitioned Embedded Architecture based on Hypervisor: the XtratuM approach.

Authors: S. Peiró, A. Crespo, I. Ripoll, M. Masmano

Affiliation: Instituto de Informática Industrial, Universidad Politécnica de Valencia, Spain

Publication: Eighth European Dependable Computing Conference, EDCC-8 2010, Valen-
cia, Spain, 28-30 April 2010. IEEE Computer Society 2010, ISBN 978-0-7695-4007-8.



Partitioned Embedded Architecture based on Hypervisor: the XtratuM approach

S. Peiró, A. Crespo, I Ripoll, M. Masmano
Instituto de Automatica e Informatica Industrial

Universidad Politecnica de Valencia
Valencia, Spain

{speiro, acrespo,iripoll,mmasmano}@ai2.upv.es

Abstract—Partitioned sofware architectures were conceived
to fulfill security and avionics requirements where predictabil-
ity is extremely important. Both, the availability of new proces-
sors and an increased necessity of security, have opened new
possibilities to use efficiently this approach. Avionic industry
has consolidated the Integrated Modular Avionics (IMA) as a
solution to manage the software growth in functionality and in
efficiency. Now, the aerospace sector is adapting these concepts
on its developments. One of the solutions used to achieve
partitioned systems is based on virtualisation techniques. In this
paper we present XtratuM, a bare-metal hypervisor which im-
plements para-virtualization and dedicated device techniques.
XtratuM provides a virtual machine that is ’near’ the native
one. It permits to execute a set of partitions, containing each
one an operating systems and its applications. Security is based
on the temporal and spatial isolation properties provided by
the hypervisor. This paper describes the main design criteria
used to achieve temporal and spatial partition isolation and an
approach to extend the trusted environment from the hardware
level to the hypervisor level in order to verify the temporal and
spatial isolation properties

Keywords-hypervisor; real-time; secure kernel;

I. INTRODUCTION

The availability of new processors for embedded appli-
cations has raised new possibilities for these applications.
Currently, the embedded applications have more features
and, as a consequence, more complexity. There exist a
growing interest in enabling multiple applications to share a
single processor and memory. To facilitate such a model the
execution time and memory space of each application must
be protected from other applications in the system.

Partitioned software architectures have evolved to fulfill
security and avionics requirements where predictability is
extremely important. The separation kernel proposed in [1]
established a combination of hardware and software to allow
multiple functions to be performed on a common set of
physical resources without interference. The MILS (Multiple
Independent Levels of Security and Safety) initiative is
a joint research effort between academia, industry, and
government to develop and implement a high-assurance,
real-time architecture for embedded systems. The technical
foundation adopted for the so-called MILS architecture is a
separation kernel. Also, the ARINC-653 [2] standard uses
these principles to define a baseline operating environment

for application software used within Integrated Modular
Avionics (IMA), based on a partitioned architecture.

Virtual machine technology [3] is a secure and efficient
way to build partitioned systems. A virtual machine (VM) is
a software implementation of a machine (computer) that exe-
cutes programs like a real machine. Hypervisor (also known
as virtual machine monitor VMM [4]) is a small software
layer (or a combination of software/hardware) that enables to
run several independent execution environments or partitions
in a single computer. The key difference between hypervisor
technology and other kind of virtualisation (such as java
virtual machine or software emulation) is the performance.
In bare-machine hypervisors the overhead can be very low
maintaining the throughput of the virtual machines very
close to the native hardware.

The low overhead and the reduced size of the hypervisor
can be considered as an appropriated solution to achieve
secure systems if it is designed following strict design
criteria to meet security requirements. Its correctness can
be sufficient to ensure the security of the system as a whole
or, at least, the security of a set of trusted partitions. In a
partitioned system, the partitions can accommodate different
kinds of applications: real-time, trusted, non trusted, etc. As
consequence, the partition’s operating system can be tailored
to provide a set of specific services to its applications.

In this paper we present a solution for partitioned based
on a bare-metal hypervisor called XtratuM. It has been
designed specifically for critical real-time systems following
a set of requirements for secure space applications based on
the ARINC-653 standard. In the next section, we present
a review of the virtualisation techniques for embedded real
time systems. Section III presents the main design criteria.
Also, we analyse the processor dependencies and and the
virtualise services to the partitions. Section III-A describes
the hypervisor architecture and the services provided to
the partitions. Finally, we build a model based on finite
state machines that permits to analyse and validate the
temporal and spatial properties. Finally some conclusions
are enumerated.

II. REAL-TIME EMBEDDED PARTITIONED SYSTEMS

In the best of the author’s knowledge, the separation ker-
nel approach was the first technique used to achieve highly



secure systems. It is a natural extension for the already
existing operating systems. A partitioned kernel is basically
a real-time operating system with some modifications to
enforce stronger isolation between processes.

Platform virtualisation is an enabling technology that can
be used (among several other uses) to cover some security
aspects of the application. Depending on the type and re-
quirements of the application, some virtualisation techniques
work better than others. Although ideally a hypervisor
which provides full and transparent virtualisation is the most
desirable one. In the case of embedded systems with real-
time constraints, the partial virtualisation (para-virtualisation
method) seems to be the most appropriated choice.

One important aspect is the amount of critical code. In the
case of executing the hypervisor on top of an OS, the hosted
OS is also in the path of the critical system, and therefore,
it shall also be certified. Additionally, it is important to
consider the peripheral sharing policy. In some cases, when
the policy for sharing a peripheral is user-specific (or when
the user requires a fine grain control over the peripheral), it is
better to allocate the native peripheral to a specific partition.
This technique (named dedicated devices) is widely used
in embedded systems when a device is not shared among
several partitions, or when the complexity of the driver is
that high that it does not worth including it in the hypervisor
layer. When the peripheral is shared by several partitions, the
system can be also organised by using a specific partition
(IOserver) that access directly to the shared peripherals and
provide services to other partitions.

An alternative to the hypervisor approach is the µkernels.
This architecture has two main components: the ”separation
kernel” and the ”system software”. These services can be
used to build several different operating systems, resulting
in a virtualized system. The µkernel approach started with
the Mach µkernel [5]. One of the most representative im-
plementation of a µkernel is the L4 [6]. One of the main
drawbacks of this solution is that all application threads are
handled by the µkernel introducing, thus a large number of
context switches at the µkernel level which has a strong
impact on the system performance.

III. XTRATUM OVERVIEW

XtratuM [7] has been designed to achieve temporal and
spatial requirements of safety critical systems. Ported over
the LEON2 [8] processor to implement the TSP-based (Time
and Space Partitioning) solution for generic payload on-
board software proposed by CNES (Centre National d’tudes
Spatiales) [9]. TSP-based architecture has been identified as
the best solution to ease and secure reuse, enabling a strong
decoupling of the generic features to be developed, validated
and maintained in mission specific data processing [10].

LEON2 processor is a 32-bit processor core based on
the SPARC V8 architecture, suitable for system-on-a-chip
(SOC) designs, which can be synthesized in a FPGA. It is

used by the European Space Agency and has successfully
been used in various commercial and research endeavours.

A. XtratuM Architecture

Figure 1. XtratuM architecture.

XtratuM is in charge of virtualisation services to par-
titions. It is executed in supervisor processor mode and
virtualises the cpu, memory, interrupts and some specific
peripherals. The figure 1 shows the complete system archi-
tecture. The internal XtratuM architecture includes: memory
management, scheduling (fixed cyclic scheduling), inter-
rupt management, clock and timers management, partition
communication management (ARINC-653 communication
model), health monitoring and tracing facilities. Three layers
can be identified:

• Hardware-dependent layer: It implements the set of
drivers required to manage the strictly necessary hard-
ware: processor, interrupts, hardware clocks, hardware
timers, paging, etc. This layer is isolated from the
rest through the Hardware Abstraction Layer (HAL).
Thus, the HAL hides the complexity of the underlying
hardware by offering a high-level abstraction.

• Internal-service layer: These services are not available
to the partitions. This layer includes a minimal C library
which provides the strictly required set of standard C
functions (e.g. strcpy, memcpy, sprintf) and a bundle
of data structures. The system boot is also part of the
internal services.

• Virtualization-service layer: It provides the services
required to support the para-virtualisation services,
which are provided via the hypercall mechanism to
partitions. Some of these services are also used from
other XtratuM modules.

B. Partitions

A partition is an execution environment managed by the
hypervisor which uses the virtualised services. Each partition
consists of one or more concurrent processes (implemented
by the operating system within each partition), sharing
access to processor resources based upon the requirements
of the application.



Figure 2. Partition states.

Partitions need to be virtualised, that is, changed to collab-
orate with the hypervisor, in order to be executed on top of
XtratuM. For instance, a partition cannot manage directly the
state of the hardware interrupts: a try of enabling/disabling
directly them raises a trap. Therefore, the partition has to be
modified to invoke the adequate hypercalls.

XtratuM defines two types of partitions: normal and
system. System partitions are allowed to manage and monitor
the state of the system and other partitions. Some hypercalls
cannot be called by a normal partition or have restricted
functionality. Figure 2 shows the set of partition states with
the events generated by the hypervisor as result of a system
partition hypercalls.

Note that system rights are related to the capability to
manage the system, and not to the capability to access
directly to the native hardware or to break the isolation:
a system partition is scheduled as a normal partition; and
it can only use the resources allocated to it in the system
configuration specification. Table I summarises hypercalls
grouped depending on their mission.

Group Some hypercalls Super
Partition management start, stop, reset, resume, shut-

down, status
Yes

Health monitor log open, read, status Yes
Trace management open, read, seek, status Yes
Interrupt management enable, disable, mask, unmask No
Clock management set timer, get clock No
Interpartition commu-
nication

create port, read, write,
get status

No

IO management input output No
SparcV8 dependent atomic op, flush regwin, flags No

Table I
LIST OF GROUPS OF HYPERCALLS.

C. Processor dependencies

In a bare-metal hypervisor, the hardware dependency
is an important issue. The presence or absence of some
processor features (MMU, or MPU (Memory Protection
Unit), supervisor modes, etc.) has a strong impact on its
design and posterior implementation.

Some relevant features of the processor have a major
impact on the virtualisation. One of these features is the ab-
sence of MMU. The LEON2 processor presents this feature,
it does not includes a MMU but a rather simple memory

protection mechanism consisting in two write protection
registers (dubbed WPR). These registers enable to define
read-only memory areas, raising an exception any time a
write operation within these areas is carried out. In addition,
this processor implements a IO protection mechanism: it is
possible to disable the access to the I/O memory-mapped
registers through a bit (IOP bit) in a configuration register.

IV. TRUSTABILITY ENFORCEMENT

The hypervisor is a promising technology to build trusted
systems. In order to design a hypervisor for safety critical
systems, the following design criteria have to be followed:

• Strong spatial isolation: the hypervisor is executed in
privilege (supervisor) processor mode whereas parti-
tions are executed in user one. Partitions are allocated
in independent physical memory addresses. A partition
only can access to its memory areas.

• Strong temporal isolation: It enforces the temporal
isolation by using a fixed cyclic scheduler.

• System partitions: some partitions can use special ser-
vices provided by the hypervisor.

• Robust communication mechanisms: partitions are able
to communicate with other partitions by using spe-
cific services provided by the hypervisor. The basic
mechanism provided to the partitions is the port-based
communication. The hypervisor implements the link
(channel) between two ports or more ports. Two types
of ports are provided: sampling a queuing as defined in
the ARINC-653 standard [2].

• Interrupt Model: the hypervisor provides a secure in-
terrupt model to the partitions. A partitions cannot
interact with native traps. All the interrupts are, in first
place, handled by the hypervisor, who is in charge of
propagate them to partitions according to the system
configuration file.

• Fault management model: faults are detected and han-
dled by the hypervisor.A fault can be defined as the
occurrence of a system trap or an event triggered by
the hypervisor itself.

• Non-preemtable: in order to reduce the design com-
plexity and increase the reliability of the implementa-
tion, the hypervisor is designed as a monolithic, non-
preemtable kernel. This decision prevents the occur-
rence of internal race conditions and facilitates the
formal model.

• Resource allocation: fine grain hardware resource al-
location is specified in the system configuration file.
This configuration permits to assign system resources
(memory, I/O registers, devices, etc.) to the partitions.

• Small: The validation and formal verification complex-
ity increases with the number of lines of code. The
hypervisor code shall provide the minimum services in
order to be as minimal as possible.



• Deterministic hypercalls: All services (hypercalls) shall
be deterministic and fast.

A. Interrupt Model

Different manufacturers use terms such as exceptions,
faults, aborts, traps, and interrupts to describe the proces-
sor mechanisms to receive a signal that requires attention.
We will use the term interrupt to globally refer to these
mechanisms.

In a partitioned system, the hypervisor handles the in-
terrupts (native interrupts) and generates the appropriated
virtual interrupt to the partitions that can be: i) virtual
traps (as consequence of traps); ii) virtual exceptions (as
consequence of a exceptions); and iii) virtual hardware
interrupts (as consequence of peripheral interrupts).

Not all the exceptions are propagated to the partitions.
For instance, a memory access error that is generated as
consequence of a space isolation violation is handled by
the hypervisor which can perform a halt partition action
or can generate another different virtual exception (such as
memory isolation fault). On the other hand, a numeric error
is propagated directly to the partition. Virtual exceptions
are a superset of the exceptions which includes additional
exceptions generated by the hypervisor (virtual processor).
Some of them are: memory isolation error, IO isolation
error and temporal isolation error. Only virtual hardware
interrupts can be enabled or disabled by partitions.

One of the strategies used to prevent partitions to jeop-
ardise temporal isolation is that partitions cannot access to
the interrupt table and cannot interact with native interrupts.
All interrupts are directly handled by XtratuM and, when
required, propagated to the partitions which define their
own virtual interrupt table. A second strategy is related to
the scheduling, when a partition is scheduled, the harware
interrupts associated to other partitions are disabled: during
the partition scheduling, the hypervisor detects the pending
interrupts for the next partition to be executed and raises
(emulates) them depending on the partition interrupt mask.

B. Fault Management Model

The Health Monitor (HM) is the part of XtratuM that
detects and reacts to anomalous events or states. The purpose
of the HM is to discover the errors at an early stage and to
try to solve or confine the faulting subsystem in order to
avoid or reduce the possible consequences.

HM is invoked as result of a HM event occurrence.
Following scenarios could raise a HM event:

• An exception has been triggered by the CPU. The
exception handler generates the associated HM event.

• A native interrupt has been received and the temporal
or spatial properties are not valid.

• A trap has been received and the temporal or spatial
properties are not valid.

• A partition detects an abnormal internal situation and
raises a HM event. For instance, the operating system
inside of a partition detects that the application is
corrupted.

• When the partition request a hypervisor service (hy-
percall), the spatial or temporal properties are verified
as pre- and post-conditions. If these validations fail, a
HM event is generated.

The HM event occurrence is the manifestation of an
error. XtratuM reacts to the error providing a simple set of
predefined actions to be done when it is detected. Once a HM
event is raised, XtratuM performs an action that is specified
in the configuration file. These actions can be, depending on
the causing fault (partition or hypervisor), stop, shutdown
or reset a partition, propagate or ignore the event to the
partition, halt, shutdown, reset the system. HM events and
actions are logged to permit remote attestation.

C. System specification

Deploying a partitioned system presents many challenges
related to the system specification, configuration, resource
allocation and validation. This configuration process in-
volves two different type of roles: the system integrator
and the partition developers. The integrator is responsible
of system definition and resource allocation. In XtratuM, the
system specification is detailed in a XML file that specifies:

• XMHypervisor: species the board resources and the
hypervisor health monitoring table. It includes: the list
of memory regions allocated to XtratuM, the processor
frequency and the scheduling plan.

• PartitionTable: this is a container element which holds
all the partition elements. A partition element speci-
fies the resources which belongs to the partition: the
memory areas, the HW-interrupts, the IO ports, a list
of communication ports and the temporal constraints.

• Channels: a list of channels which defines the inter-
connections between the partitions’ ports. For each
channel, the following information is specified: a chan-
nel identifier, the type, the input and output ports,
the maximum message size, the maximum number of
messages (queuing channels).

• Devices: contains the conguration of the virtualised
devices.

The XML file is parsed and validated against the main
system properties of a partitioned system. The result of this
validation process is a set of automatically generated data
structures (XM CT) that will be compiled in the deployment
phase, jointly with the binaries of the partitions and the
hypervisor itself, to generate the system container to be
deployed to the target.

V. HYPERVISOR MODEL

An initial assumption is that the underling hardware is
trustworthy. It means that the internal processor registers



work properly if they are used in a correct way. For the
temporal and spatial isolation purposes, we assume that: i)
the access to the processor registers is only allowed when
the processor is in privileged mode. The processor mode
can be set or unset by accessing the control processor status
(PMS); ii) the processor memory protection registers (WPR)
raises an exception when an instruction tries to write in a
protected memory area; iii) a specific timer is exclusively
used by XtratuM to control the slot duration; iv) the IOP bit
in the control processor status permits to enable/disable the
access to the IO ports; and v) the interrupt vector is handled
exclusively by XtratuM, therefore any access/modification
can be done only when the processor is in privileged mode.

XtratuM can be defined as a finite state machine [11]
given by (Ω, α, S, S0, θ, F ) where:

• Ω is the system configuration. It is automatically gen-
erated from the system specification (XM CT).

• α is the input alphabet described by the set of events
which are accepted by the hypervisor (hardware inter-
rupts, exceptions and traps).

• S is a finite non-empty set of states. These finite states
are result of the scheduling plan. Each state corresponds
to the execution of a partition in the scheduling plan
and has associated a relative initial and final time
with respect to the MAF origin. From the temporal
and spatial isolation properties only three events are
significant: next slot, an exception that can perform a
system halt (HM action), and a trap (hypercall).

• S0 is the initial state which correspond to the hypervisor
state after booting and loading the partitions.

• θ is the state-transition function given by δ : S ×Σ→
S. A function fΩ(Si) extracts the set of hardware
parameters associated to the Si state.

• F is the final state that corresponds to the system halt.

Figure 3 shows the set of states of the hypervisor gener-
ated from the static scheduling plan defined in the specifica-
tion. Each state Si models the status of the hypervisor when
a partition Pi is under execution. The transition from one
state to the next one, is consequence of the next slot occur-
rence which is the slot duration defined in the scheduling
plan. This event is the hardware interrupt associated to the
slot duration timer. After the arrival of this event (interrupt),
the hypervisor stores the context of the previous partition,
selects the next partition to be executed, extracts from the
XM CT table the harware context to guarantee the spatial
and temporal isolation, and then the control is transfered to
this partition if the partition status is in ready state.

During the execution of a partition, the hypervisor can be
invoked as consequence of an interrupt, exception or hyper-
call (trap). However, the hypervisor invocation has no effect
from the temporal and spatial isolation point of view, mainly
because the hypervisor state remains in the same state until
the arrival of the next slot event. Anyway, a pre- and post-

Figure 3. Finite set of states.

Figure 4. State variables.

condition validation of the temporal and spatial properties is
performed each time the hypervisor is invoked. A violation
of these properties raises the appropriated HM event.

Figure 4 depicts a view of the hypervisor model and the
state variable used to extend the trustworthiness.

A. Spatial isolation properties

The basic concern of spatial isolation is to detect and
avoid the possibility that a partition could access to another
partition’s memory area for reading or writing. Hardware
provides some basic mechanisms to guard against violations
of spatial isolation. Spatial isolation properties are conditions
that permit to guarantee that the hardware mechanisms are
set to the appropriated values when a partition is under
execution. These conditions have to compare the memory
area region of the current partition against the processor
memory protection registers in the LEON2 architecture.

The spatial isolation property states that the data process-
ing occurred in any partition i cannot access to any memory
address outside of the its address memory region. This is
granted if the hardware mechanisms are used according to
the principles announced above.

Property 1: Supposing that the hypervisor is in state Si

and the next state will be Sj as consequence of the event
next slot ∈ α occurrence. In this situation, at the entry of



the hypervisor: PRegs = fΩ(Si), and at the output of the
hypervisor PRegs← fΩ(Sj)).

were fΩ(Si) the function that extracts the PRegs values
from a XM CT and PRegs are the hardware registers. For
∀e 6= next slot ∈ α the state is not changed.

Also, the spatial isolation refers to the IO memory access.
In the LEON2 processor, the IO memory access protection is
a global mechanism. To guarantee the isolation, a direct IO
memory access is forbidden to partitions. It is only provided
through a specific set of hypercalls which supervises the
correct access by part of partition the IO memory mapped
addresses. The hypervisor has to validate that the hardware
mechanisms are enabled.

Property 2: Independently of the initial and final states,
when an event e ∈ α occurs, the IO memory protection
(IOP ∈ PRegs) bit is set to 1 at the entry of the hypervisor
IOP = 1 and again IOP = 1 when the control is
transferred to the partition. During the execution of the
hypervisor IOP = 0.

B. Temporal isolation properties

Temporal isolation refers to the system ability to execute
several executable partitions guaranteeing that the execution
of each partition does not depend on the temporal behaviour
of any other partitions. Temporal isolation enforcement is
achieved designing a schedulable plan and guaranteeing that
it is executed as specified. The hypervisor scheduling is
responsible of the correct execution of the plan. XtratuM im-
plements a static (cyclic) scheduling following the ARINC
653 specification [2] which defines a cyclic scheduling for
the global scheduler and a preemptive fixed priority-based
policy for the local scheduler (at partition level).

The concern of temporal isolation is to guarantee that
a partition is executed only in the intervals specified in
the scheduling plan. Moreover, interrupts allocated to other
partitions shall not impact on the partition execution. If the
execution plan is guaranteed, there is not possibility for any
partition to monopolise the CPU or crash the system. Other
scenarios that could cause a partition to fail to relinquish
the CPU on time include simple schedule overruns. Slot
duration is controlled by a timer that is used exclusively
by the hypervisor and cannot be influenced by the partitions
timers which are attached to a second hardware timer.

The temporal isolation properties can be defined as:
Property 3: At any instant of the state Si, the clock

value is in the interval specified by the slot interval.
current clock ∈ fΩ

clk(Si)
where fΩ

clk(Si) is the function that returns the interval of
the slot associated to Si).

VI. CONCLUSION

Complexity of embedded systems within satellites is
growing dramatically. Payload software in that context
has evolved during the past ten years from simple data

processing, mainly formatting and transferring to ground,
into complex data processing and autonomous treatments.
In this context, TSP (Time and Space Partitioning) based
architecture has been identified as the best solution to ease
and secure reuse, enabling a strong decoupling of the generic
features to be developed, validated and maintained, XtratuM
is used as enabling technology for TSP developments.

In this paper we have presented a hypervisor specifically
designed for safety critical applications. XtratuM has been
designed following strict criteria to guarantee the temporal
and spatial isolation properties as defined in the ARINC
653 standard and the MILS approach. XtratuM defines a
virtual machine very close to the native where the main
resources are virtualised. The executable entities (partitions)
are executed on top of a virtual machine. The virtual
machine defines an interrupt model to the partitions which is
a superset of the system interrupts. The hypervisor defines its
own virtual interrupts which are delivered to the partitions.
Also, there is a Fault Management model which is directly
related to the health monitor included in the internal archi-
tecture. This health monitor is in charge of the fault detection
and error isolation through a set of action that are directly
related to the partition under execution. Finally, it has been
presented an extension of the trusted environment from the
hardware platform to the hypervisor limits. The presented
model is based on the hardware mechanisms provided by the
specific processor (LEON2) and an exclusive use of these
mechanisms by the hypervisor. This model is based on a
finite state machine as formalism.

REFERENCES

[1] J. Rushby, “Design and verification of secure systems,”
vol. 15, no. 5, Pacific Grove, California, Dec 1981, pp. 12–21.

[2] Avionics Application Software Standard Interface (ARINC-
653), March 1996, Airlines Electronic Eng. Committee.

[3] I. Corporation, “IBM systems virtualization. Version 2 Re-
lease 1 (2005),” http://publib.boulder.ibm.com/infocenter/-
eserver/v1r2/topic/eicay/eicay.pdf.

[4] R. Goldberg, “Survey of virtual machine research.” IEEE
Computer Magazine, vol. 7, no. 6, pp. 34–45, 1974.

[5] D. B. Golub, R. W. Dean, A. Forin, and R. F. Rashid, “Unix
as an application program,” in USENIX Summer, 1990, pp.
87–95.

[6] J. Liedtke, “On microkernel construction,” in Proceedings of
the 15th ACM Symposium on Operating System Principles
(SOSP-15), Copper Mountain Resort, CO, Dec. 1995.
[Online]. Available: http://l4ka.org/publications/

[7] M. Masmano, I. Ripoll, and A. Crespo, “In-
troduction to XtratuM,” 2005. [Online]. Available:
http://www.xtratum.org/doc/papert/xtratum intro.pdf

[8] G. Research, “Leon2 processor users manual,”
http://www.gaisler.com.

[9] P. Arberet, J.-J. Metge, O. Gras, and A. Crespo, “TSP-based
generic payload on-board software,” in DASIA 2009. DAta
Systems In Aerospace., May. Istanbul 2009.

[10] P. Arberet and J. Miro, “IMA for space : status and con-
siderations,” in ERTS 2008. Embedded Real-Time Software.,
Jannuary. Toulouse. France 2008.

[11] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and
Analysis of Computer Algorithms. Addison-Wesley, 1974.


